
On Semantics of Programming
Languages

By

HAMADA ALI MOHAMED ALI NAYEL

SUBMITTED FOR THE DEGREE OF MASTER IN COMPUTER
SCIENCE

FACULTY OF SCIENCE, BENHA UNIVERSITY
BENHA, EGYPT

SUPERVISORS

Prof. Maher Zayed Dr. Mohamed El Zawawy
Benha University Cairo University
Faculty of Science Faculty of Science

Department of Mathematics Department of Mathematics

2012

APPROVAL SHEET

Title of M. Thesis

On Semantics of Programming

Languages

Name of candidate

Hamada Ali Mohamed Ali Nayel

Submitted to

Faculty of Science - Benha University

Supervision Committee

Name Position Signature

Professor of Mathematics

Prof. Dr. Maher Shedid Zayed
Department of Mathematics

Faculty of Science

Benha University

Lecturer of Computer Science

Dr. Mohamed El Zawawy
Department of Mathematics

Faculty of Science

Cairo University

The Head of Mathematics Dept.

Prof. Dr. Abd El-Kareem Soliman

Addresses

Supervisors

i

• Prof. Maher Shedid Zayed

Mathematics Department

Faculty of Science

Benha University

Benha, Egypt

email: maherzayed@hotmail.com

• Dr Mohamed Abd El-Moneim El-Zawawy

Department of Mathematics

Faculty of Science

Cairo University

Giza, Egypt

email: maelzawawy@gmail.com

Author

• Hamada Ali Mohamed Ali Nayel

Computer Science Department

Faculty of Computers and Informatics

Benha University

Benha, Egypt

email: hamada.ali@fci.bu.edu.eg

ii

Acknowledgments

All gratitude and thankfulness to ALLAH for guiding and aiding me to bring this

work out to light. It is impossible to give su�cient thanks to the people who gave

help and advice (both taken and ignored) during the writing of this thesis. However,

I would like to single out both my supervisors for their valuable discussions, enriching

collaborations and their vital comments on the contents of this thesis. Without their

kind help and generous encouragement, this work would not have seen the light.I

am deeply indebted to Dr. Mohamed El-Zawawy for his kindness and emotional

support throughout the period it took to prepare this work in its final form. I

am particularly grateful for his genuine concern and his prompt replies to all the

questions I addressed to him, for giving so generously of his time in revising this work

and, in the process, pointing out some relevant and interesting ideas. I also wish

to express my deep gratitude to Professor Maher Zayed for his guidance and moral

support during the making of this work and also for his insightful remarks, fruitful

suggestions and constructive criticism. Without his broad outlook and continual

help, many aspects of this work would have remained unclarified. I also wish to

express my deep gratitude to the sta↵ of the Department of Mathematics-Faculty

of Science-Benha University-Egypt especially Professor Farouk El-Batanony and

Professor Abd El-Kareem Soliman for their guidance and moral support during my

undergraduate studying and the making of this work. It is of course impossible to

mention the names of everyone - teachers, friends and colleagues - who have taken

part in my mathematical formation. Finally, I would like to specifically thank my

family: my late father, my mother, my brother, my wife, my son and my sisters for

their moral support and encouragement.

iii

Abstract

Multi-threaded programs have many applications which are widely used such as op-

erating systems. Analyzing multi-threaded programs di↵ers from sequential ones;

the main feature is that many threads execute at the same time. The e↵ect of all

other running threads must be taken in account. This these focuses on the analysis

of multi-threaded programs. The first aim of our work is to implement partial re-

dundancy elimination for multi-threaded programs via type systems. Partial redun-

dancy elimination is among the most powerful compiler optimization: it performs

loop invariant code motion and common subexpression elimination. In chapter 3, we

present a type system with optimization component which performs partial redun-

dancy elimination for a multi-threaded programs. In chapter 4, we designed a type

systems based data race detector. Data race occurs when two threads try to access

a shared variable at the same time without a proper synchronization. A detector is

a software that determines if the program contains a data-race problem or not. In

this these we develop a detector that has the form of a type system. We present a

type system which discovers the data-race problems. We also prove the soundness

of our type system.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 2

1.1 Background . 2

1.1.1 Operational Semantics . 2

1.1.2 Phases of Compilation Process 3

1.1.3 Compiler Optimization . 4

1.1.4 Examples of Optimizations . 5

1.1.5 Redundancy Elimination . 7

1.1.6 Type Systems . 9

1.1.7 Multithreaded Programs . 11

1.2 Aims of thesis . 12

2 Related Work 15

2.1 Partial Redundancy Elimination . 15

2.1.1 Code Motion . 15

2.1.2 Common Subexpression Elimination 17

2.1.3 PRE . 18

2.1.4 Morel and Renvoise’s Algorithm for PRE 18

2.1.5 PRE using type system . 22

v

2.2 Analysis of Multi-threaded Programs. 26

2.2.1 Optimization Uses . 27

2.2.2 Data Race Detection . 27

2.2.3 Pointer Analysis . 28

2.3 Summary . 28

3 PRE for Multi-threaded Programs 32

3.1 Introduction . 32

3.2 Motivation . 34

3.2.1 Fwhile Language . 34

3.2.2 Motivating Example . 34

3.2.3 Natural Semantics . 36

3.3 Program Analysis . 37

3.3.1 Modified Analysis . 37

3.3.2 Soundness of modified analysis 39

3.3.3 Concurrent Modified Function C 41

3.3.4 Anticipability Analysis . 42

3.3.5 Partial availability Analysis 43

3.4 Optimization Component . 44

3.4.1 Semantic soundness . 45

3.5 Conclusion and Future Work . 49

4 Type Systems Based Data Race Detector. 51

4.1 Introduction . 51

4.2 Motivation . 53

4.2.1 Operational Semantics . 54

4.3 Read Type System . 55

4.3.1 Soundness of Read Type System. 56

vi

4.4 Safety Type System . 57

4.4.1 Soundness of Safety Type System 58

4.4.2 Implementation . 60

4.5 Conclusion and Future Work . 60

Bibliography 61

vii

1. Introduction

Chapter 1

Introduction

1.1 Background

1.1.1 Operational Semantics

The main constituents in designing, analyzing, and using programming languages

are:-

Syntax Symbols and formal description to create well-formed expressions, sen-

tences and programs in the language. Syntax deals solely with the form and

structure of symbols in a language without any consideration given to their

meaning.

Semantics The meaning of syntactically valid sentence in a language. Semantics

describes the behavior that a computer follows when executing a program in

a language.

Pragmatics Aspects of the language such as utility and scope of applications.

Pragmatics includes issues such as ease of implementation, e�ciency and pro-

gramming methodology.

2

Chapter 1. Introduction 3

This thesis concerns with semantics. Semantics fall broadly into three categories:

denotational, axiomatic, and operational. In a denotational semantics [71, 67, 43,

24], the meaning of programs is defined abstractly with suitable mathematical struc-

ture. In an axiomatic semantics (also called ”program logic”), meaning is defined

indirectly via axioms and rules of some logic of program prosperities. Hoare logic

[27] is an instance of program logic whose axioms have the form {P}C{Q}. This

means, if the pre-condition P is satisfied before running the program C and if C

terminates then the post-condition Q will be satisfied afterwards. In an operational

semantics (also called ”natural semantics”), the meaning of programs is defined in

terms of their behaviour (i.e the steps of computation they can take during program

execution).

All of these categories are related and complement each other[45, 42, 1]. The

noticeable di↵erence between categories is that denotational and axiomatic semantic

are commonly used with semantic studies in mathematical logic and linguistics, while

operational semantic is distinctive in computer science. In this thesis we will use

operational semantics to represent the execution of programs.

Operational Semantics Operational semantics is easy to understand and related

to practical concerns and the mathematical theory. Programs can be operationally

described with simple notion of transition system. A transition system generally

contains a set of configurations(always called ”state”) and a relation. A state con-

tains the elements of interest, depends on the purpose of study. It may contains

variables, pointers or locations. A relation defines the rules of each phrase of the

program.

1.1.2 Phases of Compilation Process

Compilation process has four basic phases:-

Chapter 1. Introduction 4

1. Analysis phases

Which conceptually contain three phases lexical analysis, syntax analysis, and

semantic analysis.

2. Intermediate code generation

After analysis phases, some compilers generate an explicit intermediate repre-

sentation of the source program. We can think of this intermediate represen-

tation as a program for an abstract machine. It should be easy to produce,

and easy to translate into the target program.

3. Code optimization

The code optimization phase attempts to improve the intermediate code.

There is a great variation in the amount of code optimization di↵erent com-

pilers perform. In those that do the most, called optimizing compilers.

4. Code generation

The final phase of the compiler is the generation of target code consisting

normally of relocatable machine code or assembly code.

1.1.3 Compiler Optimization

The optimization is a transformation that improves the performance of the target

code. Improving includes minimizing code and minimizing number of calculations.

An optimization must satisfy the following conditions to be true:-

1. Must not change the output.

2. Must not cause errors that were not present in the original program.

3. Must be worth the e↵ort.

Chapter 1. Introduction 5

There are two types of optimizations. Local code optimization: code improvement

within a basic block. Global code optimization: improvements take into account

what happens across basic blocks. Most global optimizations are based on data-flow

analysis, which are algorithms to gather information about program. The results of

data-flow analysis all have the same form: for each instruction in the program, they

specify some property that must hold every time that instruction is executed. The

analysis di↵er in the properties they compute.

1.1.4 Examples of Optimizations

Partial Dead-code Elimination

Avoiding the execution of unnecessary statements at runtime is called partial dead-

code elimination(PDE). PDE improves the runtime e�ciency of a program. PDE

is combined of two separate transformations; 1)sinking of assignments; moving as-

signments as far as possible in the direction of the control flow, 2) eliminating all

assignments being dead after the moving step.

(a) (b) (c)

Figure 1.1: Example partial dead-code elimination

The following example, shown in figure 1.1 , illustrates that. The assignment

Chapter 1. Introduction 6

of node 1 of figure 1.1a is partially dead because it is dead on the left branch (as

its left-hand side variable is not used afterwards in the program), but alive on the

right one (as it used in node 5). This assignment can be eliminated by moving it to

the entries of node 3 and node 4 as shown in figure 1.1b. There, the occurrence of

node 3 is (totaly) dead, and can be eliminated as shown in figure 1.1c.

Strength Reduction

Strength reduction[9, 69, 50, 52] is a compiler optimization which replaces an ex-

pensive operation by a cheaper one, such as a multiplication by an addition.

(a) (b)

Figure 1.2: Example of strength reduction

Example Figure 1.2 shows an example that illustrates strength reduction, where

the multiplication in figure 1.2a replaced by addition in figure 1.2b. As the re-

lationship b := 5 ⇤ a surly holds after such an assignment to b in figure 1.2a, and

b is not changed elsewhere in the inner loop around B2, it follows that just after

the statement a := a + 1 the relationship b = 5a + 5 must hold. We may therefore

replace the assignment b := 5 ⇤ a by b = b+ 5. The only problem is that b does not

have a value when we enter the block B2 for first time. Since we must maintain the

Chapter 1. Introduction 7

relationship b := 5 ⇤a on entry to block B2, we place an initialization of b at the end

of block where a itself is initialized.

1.1.5 Redundancy Elimination

Another category of optimization is redundancy elimination. Redundancy elimina-

tion is about eliminating one of two computations which are equivalent.

Causes of Redundancy

There are many redundant operations in a typical program. Sometimes the re-

dundancy is available at the source level. For instance, a programmer may find it

more direct and convenient to recalculate some result, leaving it to the compiler to

recognize that only one such calculation is necessary.

Types of redundancy elimination

1. Value Numbering .

Associate symbolic values to computations and identifies expressions that have

the same value.

2. Common Subexpression Elimination .

Finds computations that are always performed at least twice on a given ex-

ecution path and eliminates the second and later occurrences of them. This

optimization requires data-flow analysis to locate redundant computations and

almost always improves the performance of programs it is applied to.

3. Constant Propagation .

Identifies variables that have constant values and use the constants in place of

variables.

Chapter 1. Introduction 8

4. Loop-invariant Code Motion .

Finds computations that produce the same result every time a loop is iter-

ated and moves them out of the loop. This optimization almost improves the

performance. For non-confusing also called code motion.

5. Partial Redundancy Elimination .

Inserts computations in path to convert partial redundancy to full redundancy.

It is a complex optimization, it consists of code motion and common subex-

pression elimination

Partial redundancy elimination (PRE) is the most powerful compiler optimization

which it encompasses common subexpression elimination and code motion. PRE was

presented by Morel and Renvoice[46]. They solved the problem of PRE by solving

more general problem, that is, the elimination of computations performed twice on a

given execution path. Such computations called partially redundant. PRE performs

insertions and deletions of computations in a flow graph in such away that after the

transformations, each path, contains fewer occurrences of such computations than

before. Most compilers today performs PRE. It is regarded as one of the most

important optimizations and is an active area of research [8, 11, 30, 47, 48, 53, 76,

68, 5].

The algorithm presented by Morel and Renvoice[46] has some shortcomings. It

does not eliminate all partial redundancies that exist in the program. It involves

performing bidirectional data flow analysis which is more complex than unidirec-

tional analysis [33]. To avoid these shortcoming Knoop et al. [33, 32] presented

sequence of unidirectional analysis equivalent to that analysis and proposed optimal

solution to the problem with no redundant code motion.

Chapter 1. Introduction 9

There are many methods used to represent PRE. J. Xue and J. Knoop represented

PRE as a maximum flow problem [76]. It was amazing and innovative method to

represent PRE. Ando Saabas and Tarmo Uustalu[61] used type systems as frame-

work to solve PRE problem. They showed that type systems are a compact and

useful framework to describe dataflow analysis and optimizations.

1.1.6 Type Systems

Type systems are formal methods ensure that a system (program) behaves correctly

with respect to some specifications. Type systems are defined in many ways. The

closest one that covers its informal usage by programming languages designers and

implementers given by Benjamin [55] is:-

”A type system is a tractable syntactic method for proving the absence of

certain program behaviors by classifying phrases according to the kinds

of values they compute”.

In any type system, types provide a division or classification of some universe of

possible values: a type of values that share some property.

Type checking In many languages, type checking is used to prevent some or all

type errors. Some languages use type constraints in the definition of legal program.

Implementations of these languages check types at compile time, before a program

is started. In these languages, a program that violate a type constraints is not

compiled and can not be run. In other languages, checks for type errors are made

while the program is running.

Run-Time Type Checking In programming languages with run-time type check-

ing, the compiler generates code so that, when an operation is performed, the code

Chapter 1. Introduction 10

checks to make sure that the operands have the correct type. An advantage of run-

time type checking is that it catches type errors. A disadvantage is the run-time

cost associated with making these checks.

Compile-Time Type Checking Many modern programming languages are de-

signed so that it is possible to check expressions for potential type errors. In these

languages, it is common to reject programs that do not pass the compile-time type

checks. An advantage of compile-time type checking is that it catches errors earlier

than run-time checking does. Compile-time checking can make it possible to pro-

duce more e�cient code, because that compile-time checks may eliminate the need

to check for certain errors at run-time.

Some languages may be called statically-typed. In these languages, each program

phrase must have a type and the type can be determined e�ciently from the syn-

tactic form of the expression. A pragmatic reason to include types in programming

languages is the role of types in many approaches to modular software design[10, 41].

Features of type systems Type system plays an important role in designing

and using programming languages. Many features can be achieved by using type

systems:

1. Detecting Errors

A good benefit of using static type checking is early detection of errors. Pro-

gramming languages that are richly typed are a good environment for working.

Not only trivial mistakes are detectable (such as multiplying an integer by a

string), but also deeper conceptual errors (such as confusing units in scientific

calculations).

2. Abstraction

Chapter 1. Introduction 11

Type systems are considered to be the backbone of the modulo languages,

which ties components together to produce large systems. Type systems allow

the large system to be designed independently of particular implementations

of its parts.

3. Documentation

Type information in procedure header and in module interfaces are a form of

documentation, giving useful hints about behavior. This form of documenta-

tion is up to date, since it is checked during every run of the program.

4. E�ciency

Typing information be used by compilers to produce more e�cient code. As an

example, a first type system appeared in 1950s were to improve the e�ciency

of numerical calculations in Fortran.

5. Language Safety

There are many informal definitions of language safety. One of them: ”A

safe language is one that protects its own high-level abstraction”. In these

definition safety refers to the language’s ability to guarantee the integrity of

these abstractions. Another definition focuses on portability: ”A safe language

is completely defined by its programmer’s manual ”.

1.1.7 Multithreaded Programs

Multithreaded is a key consideration technique for modern software. Multithreaded

programs are widely used by programmers. Programmers use multiple threads of

control for many reasons. As an example, operating systems use multithreads as a

basic technique. In operating systems, you can write your text file, playing an audio,

updating software, and downloading file from internet at the same time. All of these

Chapter 1. Introduction 12

tasks called threads. All threads run at the same time. We do not know the order of

execution. Another examples that use multithreading as core technique are building

responsive servers that interact with multiple clients and producing sophisticated

user interface[56]. Multithreading is extremely useful in practise. For example, a

browser should be able to simultaneously download multiple images. A web server

needs to be able to serve concurrent requests. Programming languages(like Java) use

a thread to do garbage collection in the background. Graphical user interface(GUI)

programs have a separate thread for gathering user interface events from the host

operating environment.

Research in program analysis has traditionally focused on sequential programs

[51]. Developing analysis for multithreaded programs is a challenging problem

[44, 63]. The primary complication is characterizing the e↵ect interactions between

threads. Also, the order of execution of threads, which is unknown, add another

complication. Pointer analysis known as a great research area in sequential programs

[26]. Pointer analysis also takes a great place in analyzing multithreaded programs

[23, 26, 15, 58, 62, 57].

1.2 Aims of thesis

1. The first aim is to apply PRE on a multi-threaded language. We use type

systems as a framework. To achieve this aim, we firstly introduce modified

analysis, which calculates the modified variables at each program point. Then,

we define concurrent modified function C. Definition of C depends on existing

of threads. We define type system for anticipability and conditional partial

availability, which di↵er from those in [61]. Type systems for optimization

components were introduced. Then, we proved the soundness of type systems

Chapter 1. Introduction 13

with optimization components.

2. The second aim is to design a type systems based data race detector. We

introduce a type system that detects data-race problem for multi-threaded

programs of a simple language m-while. We also prove the soundness of pro-

posed type system. To achieve this aim, we firstly introduce read type system,

and safe type system. Soundness of proposed type systems are proved.

2. Related Work

Chapter 2

Related Work

This chapter reviews the work related to that presented in this thesis.

Organization

This chapter is organized as follow:-

1. Partial Redundancy Elimination.

2. Multi-threaded Programs.

2.1 Partial Redundancy Elimination

Partial redundancy elimination is the most powerful compiler optimization. It en-

compasses common subexpression elimination and code motion. In this section we

will discuss the code motion and common subexpression elimination to build up our

intuition about the problem. Then, we will discuss partial redundancy elimination.

2.1.1 Code Motion

Loops are a very important place for optimization, especially the inner loops where

programs tend to spend the bulk of their time. The running time of a program may

15

Chapter 2. Related Work 16

be improved if we decrease the number of instructions in an inner loop, even if we

increase the amount of code outside that loop.

An important modification that decreases the amount of code in a loop is code

motion. This transformation takes an expression that yield the same result inde-

pendent of the number of times a loop is executed (a loop-invariant computation)

and evaluates the expression before the loop.

Example 2.1: Evaluation of limit � 2 is a loop-invariant computation in the

following while-statement in C-like language:

while (i limit-2) \⇤ statement does not change limit ⇤\

Code motion will result in the equivalent code

t = limit-2

while (i t) \⇤ statement does not change limit ⇤\

Now, the computation of limit � 2 is performed once, before we enter the loop.

Previously, there would be n+ 1 calculations of limit� 2 if we iterated the body of

the loop n times.

Example 2.2: Fig. 2.1 shows an example of a loop-invariant expression (code

motion). The expression a + b is loop invariant assuming neither the variable a

nor b is redefined within the loop. We can optimize the program by replacing all

the re-executions in a loop by a single calculation outside the loop. We assign the

computation to a temporary variable, say t, and then replace the expression in the

loop by t. There is one more point we need to consider when performing ”code

motion” optimization such as this. We should not execute any instruction that

would not have executed without the optimization.

Chapter 2. Related Work 17

(a) before optimization (b) after optimization

Figure 2.1: Example of code motion

2.1.2 Common Subexpression Elimination

An occurrence of an expression E is called common subexpression if E was previously

computed and the values of the variables in E have not changed since the previous

computation. We avoid recomputing E if we can use its previously computed value.

Example 2.3: In Fig. 2.2 the expression b+c computed in block B4 is redundant;

it has already been evaluated by the time the flow of control reaches B4 regardless

of the path taken to get there. The value of the expression may be di↵erent on

di↵erent paths. We can optimize the code by storing the result of the computations

of b+c in block B2 and B3 in the same temporary variable, say t, and then assigning

the value of t to the variable e in block B4, instead of reevaluating the expression.

Had there been an assignment to either b or c after the last computation of b + c

but before block B4 the expression in block B4 would not be redundant.

Finally we say that an expression b + c is fully redundant at point p, if it is

available expression at that point. That is, the expression b+ c has been computed

along all paths reaching p, and the variables b and c were not redefined after the

Chapter 2. Related Work 18

(a) before optimization (b) after optimization

Figure 2.2: Example of common subexpression elimination

last expression was evaluated.

2.1.3 PRE

As an example of partially redundant expression is shown in Fig. 2.3. The expression

b + c in the block B4 is redundant on the path B1 ! B2 ! B4, but not on the

path B1 ! B2 ! B4. We can eliminate the redundancy on the former path by

placing a computation of b+ c in block B3. All the results of b+ c are written in a

temporary variable t, and the calculation in block B4 is replaced with t. Thus, like

loop-invariant code motion, partial redundancy elimination requires the placement

of new expression computation.

2.1.4 Morel and Renvoise’s Algorithm for PRE

Now, we will present the first algorithm of PRE. It was proposed by Morel and

Renvoise [46]. They presented an algorithm which performs PRE, by solving boolean

systems of equations. This algorithm depends on some boolean properties associated

Chapter 2. Related Work 19

(a) before optimization (b) after optimization

Figure 2.3: Example of partial redundancy elimination

with expression. Some of these properties depends only on the commands of given

block and are termed local. Other properties depend on interactions of di↵erent

blocks and are termed global.

Local properties

1. Transparency: TRANSP. An expression is said to be transparent in a block i

if its operands are not modified by the execution of the commands of block i.

2. Local availability: COMP An expression is said to be locally available in block

i if there is at least one computation of the expression in the block i, and if the

commands appearing in the block after the last computation of the expression

do not modify its operands.

3. Local anticipability: ANTLOC An expression may be locally anticipated in a

block i if there is at least one computation of the expression in the block i,

and if the commands appearing in the block before the first computation of

expression do not modify its operands.

Chapter 2. Related Work 20

Extending previous properties to a complete program makes these properties to be

”global”. Partial availability of an expression at a given point means that there is at

least one path P leading from the entry point of the program to the point considered,

and that computation of the expression inserted at this point would give the same

result as the last computation of the expression made on the path P .

Systems of Boolean equations

• Availability System:-

AV INb =

Q

p2Pred(b)
AV OUTp

AV OUTb = COMPb +AV IN ⇤ TRANSPb

!

• Anticipability system:-

ANTOUTb =

Q

s2Succ(b)
ANTINs

ANTINb = ANTLOCb +ANTOUTb ⇤ TRANSPb

!

• Partial Availability System:-

PAV INb =

P

p2Pred(b)
PAV OUTp

PAV OUTb = COMPb + PAV IN ⇤ TRANSPb

!

where, ⇤,
Q

assigned to Boolean conjunction, and +,
P

are used for Boolean

disjunction. The post IN and OUT were used to mean that the property at be-

ginning of the block and after exiting the block respectively. Pred(b) is the set of

blocks before b, Succ(b) the set of blocks after b.

Algorithm

The algorithm has the four steps:-

Chapter 2. Related Work 21

1. Resolution of the Boolean systems for availability, anticipability, and partial

availability.

2. Determination of predecessors of the blocks containing the partial redundan-

cies and where a ne computation may be introduced. This involves the com-

putation of the Boolean properties PPIN and PPOUT (Placement possible on

entry and placement possible on exit).

3. Determination of a subset of these blocks on exit of which a computation must

be inserted. These blocks satisfy the Boolean properties INSERT.

4. Insertion of a new computation at the exit of the blocks satisfying the condition

INSERT = TRUE and suppression of the partially redundant computations

which are no redundant.

Now, we will define PPIN and PPOUT for every block b as follow:-

8
>><

>>:

PPINb = CONSTb ⇤ (ANTLOCb + TRANSPb ⇤ PPOUTb) ⇤
Q

p2Pred(b)
(PPOUTp +AV OUTp)

CONSTb = ANTINb ⇤ (PAV IN + TRANSP ⇤ ¬ANTLOCb)

PPOUTb =
Q

s2Succ
PPIN

9
>>=

>>;

for each program block b INSERTb is computed by :-

INSERTi = PPOUTb ⇤ ¬AV OUTb ⇤ (¬PPINb + ¬TRANSPb)

At the end of algorithm, new computations are inserted on exit of nodes satisfy-

ing INSERT = TRUE. Then the computation satisfying the following condition

ANTLOC ⇤ PPIN = TRUE are redundant and may be deleted.

Chapter 2. Related Work 22

2.1.5 PRE using type system

Idea of using type systems as framework for optimization were introduced at [61, 60].

A. Saabas and T. Uustau used type systems as framework to implement PRE.

They used While programs instead of using control-flow graph(CFG). Expressions

contains at most one operator. This is an inessential restriction(deep expressions

handled with little modifications on some infrastructures). The basic building blocks

of While are literals l 2 Lit, statements s 2 Stm, arithmetic expression a 2 AExp

and boolean expression b 2 BExp are defined over a set of program variables x 2

Var and numerals n 2 Z. The syntax of While language is defined in figure 2.4.

Note AExp+ = AExp\Lit).

l ::= x | n
a ::= l| l0 + l1 | l0 ⇤ l1|...
b ::= l0 = l1 |l0  l1|...
s ::= x := a | skip | s0; s1 | if b then st else sf | while b do st|

Figure 2.4: Syntax of While language

Natural Semantics The states � 2 State of the natural semantics are stores,

State =df Var �! Z. We write JaK� for integer value of an arithmetic expression

a and JbK� for truth value of boolean expression b in a state �. We write � ⌥�s ! �
0

to mean that, if the state is � before executing s then after execution the state will

be �0. The notation �[x 7! z] means that the state is � updated at x with z. Figure

2.5 contains rules of natural semantics of While language.

A. Saabas and T. Uustau presented two versions of PRE: simple PRE and full

PRE. Simple PRE relies on backward anticipability analysis and forward conditional

partial availability analysis. Anticipability analysis computes for each program point

Chapter 2. Related Work 23

� ⌥�x := a ! �[x 7! JaK�] :=ns
� ⌥�skip ! �

skipns

� ⌥�s0 ! �
00

�
00 ⌥�s1 ! �

0

� ⌥�s0; s1 ! �0 compns

� |= b � ⌥�st ! �
0

� ⌥�if b then st else sf ! �0 if
tt
ns

� |=/ b � ⌥�sf ! �
0

� ⌥�if b then st else sf ! �0 if
ff
ns

� |= b � ⌥�st ! �
00

�
00 ⌥�while b do st ! �

0

� ⌥�while b do st ! �0 while
tt
ns

� |=/ b

� ⌥�while b do st ! �
while

ff
ns

Figure 2.5: Natural Semantics of While language

which nontrivial arithmetic expressions will be evaluated on all paths before any of

their operands are modified. Partial availability analysis computes, for each pro-

gram point, which expressions have already been evaluated and later not modified

on some path through this program point. Conditional partial availability analysis:

an expression becomes partially available only hen it is anticipable. The inequations

for the analyses are:

ANTOUTi ✓

8
>><

>>:

� if i = f

T
j2succ(i)

ANTINj otherwise

9
>>=

>>;

ANTINi ✓ (ANTOUTi\MODi) [EV ALi

CPAV INi ◆

8
>><

>>:

� if i = s

S
j2pred(i)

CPAV OUTj otherwise

9
>>=

>>;

CPAV OUTi ◆ ((CPAV INi [EV ALi)\MODi) \ ANTOUTi

CPAV INi ✓ ANTINi

CPAV OUTi ✓ ANTOUTi

These inequations relies on ANT, CPAV, EVAL,and MOD. ANT for anticipability

of nontrivial arithmetic expressions. CPAV for conditional partial availability of

Chapter 2. Related Work 24

nontrivial arithmetic expressions. MOD denotes the set of expressions hose values

might be modified. EVAL denotes the set of expressions which are evaluated. The

post IN(OUT) and index b means the before entering(exit) the node b(s and f

corresponding to start and finish of nodes of whole of CFG).

x := a : ant0\mod(x) [eval(a) ! ant0 skip : ant ! ant

s0 : ant ! ant
00
s1 : ant00 ! ant

0

s0; s1 : ant ! ant0
st : ant ! ant

0
sf : ant ! ant

0

if b then st else sf : ant ! ant0

st : ant ! ant

while b do st : ant ! ant

ant  ant0 s : ant0 ! ant
0
0 ant

0
0  ant

0

s : ant ! ant0

Figure 2.6: Type system for anticipability analysis

x := a : ant0\mod(x) [eval(a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0

skip : ant, cpav ! ant, cpav

s0 : ant, cpav ! ant
00
, cpav

00
s1 : ant00, cpav00 ! ant

0
, cpav

0

s0; s1 : ant, cpav ! ant0, cpav0

st : ant, cpav ! ant
0
, cpav

0
sf : ant, cpav ! ant

0
, cpav

0

if b then st else sf : ant, cpav ! ant0, cpav0
st : ant, cpav ! ant, cpav

while b do st : ant, cpav ! ant, cpav

ant, cpav  ant0, cpav0 s : ant0, cpav0 ! ant
0
0, cpav

0
0 ant

0
0, cpav

0
0  ant

0
, cpav

0

s : ant, cpav ! ant0, cpav0

Figure 2.7: Type system for simple PRE

Type system for simple PRE

Type systems for anticipability and simple PRE are given in figures 2.6 and 2.7.

We write eval(a) to denotes set {a} if if a is nontrivial expression and � otherwise,

also mod(x) = {a 2 AExp+|x 2 FV (a)}. For combined type system, a type is

a pair (ant, cpav) 2 P(AExp+) ⇥ P(AExp+) and subtyping  is pointwise set

inclusion i.e. (ant, cpav)  (ant0, cpav0) i↵ ant ✓ ant
0 and cpav ✓ cpav

0. The type

system of optimization component shown in figure 2.8.

Chapter 2. Related Work 25

a /2 cpav a /2 ant
0\mod(x)

x := a : ant0\mod(x) [eval(a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0 ,! x := a
:=1pre

a /2 cpav a 2 ant
0\mod(x)

x := a : ant0\mod(x) [eval(a)\mce(x := a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0 ,! nv(a) = a;x := nv(a)
:=2pre

a 2 cpav

x := a : ant0\mod(x) [eval(a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0 ,! x := nv(a)
:=3pre

skip : ant, cpav ! ant, cpav ,! skip
skippre

s0 : ant, cpav ! ant
00
, cpav

00
,! s

0
0 s1 : ant00, cpav00 ! ant

0
, cpav

0
,! s

0
1

s0; s1 : ant, cpav ! ant0, cpav0 ,! s00, s
0
1

comppre

st : ant, cpav ! ant
0
, cpav

0
,! s

0
t sf : ant, cpav ! ant

0
, cpav

0
,! s

0
f

if b then st else sf : ant, cpav ! ant0, cpav0 ,! if b then s0t else s0f
ifpre

st : ant, cpav ! ant, cpav ,! s
0
t

while b do st : ant, cpav ! ant, cpav ,! while b do s0t
whilepre

ant, cpav  ant0, cpav0 s : ant0, cpav0 ! ant
0
0, cpav

0
0 ,! s

0
ant

0
0, cpav

0
0  ant

0
, cpav

0

s : ant, cpav ! ant0, cpav0 ,! [nv(a) := a|a 2 cpav0\cpav]; s0; [nv(a) := a|a 2 cpav0\cpav00]
conseqpre

Figure 2.8: Type system for optimization component

Relational method used to prove the soundness of optimization components.

Defining similarity relation ⇠ on the states. Let � ⇠cpav �
0 denote that two states �

and �
0 are agree wrt. cpav ✓ AExp

+ in the sense that 8x 2 V ar.�(x) = �
0(x) and

8a 2 cpav.JaK� = �⇤(nv(a)). The following theorem of soundness can be stated

Theorem 1. Soundness of Optimization Component

If s : ant, cpav ! ant
0
, cpav

0
,! s⇤ and � scpav �⇤ then

- � ⌥�s ! �
0 implies the existence of �0

⇤ such that �0 scpav0 �
0
⇤ and �⇤ ⌥�s⇤ ! �

0
⇤, -

�⇤ ⌥�s⇤ ! �
0
⇤ implies the existence of �0 such that �0 scpav0 �

0
⇤ and � ⌥�s ! �

0.

Extending a state and similarity relation were needed to prove the improvement

property of simple PRE. As a main part of these work, they prove that type system

of of optimization component preserves Hoare logic proofs. The following theorem

assures that meaning.

Chapter 2. Related Work 26

Theorem 2. Preservation of Hoare logic profs

If s : ant, cpav ! ant
0
, cpav

0
,! s⇤ then,

- {P}s{Q} implies {P |cpav}s⇤{Q|cpav}.

Where, {P}s{Q} means that the judgement that Q is a derivable postcondition

for s and a precondition P , also P |cpav abbreviate
V

[nv(a) = a|a 2 cpav] ^ P

Full PRE Simple PRE does not use all optimization opportunities, where it only

takes into account anticipability. There is a condition to apply PRE fully and

correctly that is, the path leading from the point where the expression becomes

partially available to a point where the expression becomes partially anticipable

contains no points at which the expression is neither anticipable nor available. This

condition can be detected by to additional data flow analyses: safe partial availability

and safe partial anticipability analyses. Their description rely on the notion of safety.

A program point is said to be safe wrt. an expression if that expression is available

or anticipable at that program point. All previous theorems introduced again but

with concept of full PRE.

2.2 Analysis of Multi-threaded Programs.

The field of program analysis has focused primarily on sequential programs. But

multithreading is becoming increasingly important, both as a program structuring

mechanism and to support e�cient parallel computations. There are several uses

for analysis information extracted from multi-threaded programs. The first use is

to enable optimizations, both generalization of traditional compiler optimizations to

multi-threaded programs and optimizations that make sense only for multi-threaded

programs. The second use is to detect anomalies in the parallel execution such as

data races or deadlock.

Chapter 2. Related Work 27

2.2.1 Optimization Uses

A problem with directly applying traditional compiler optimizations to multi-threaded

programs is that the optimizations may reorder accesses to shared data in ways that

may be observed by threads running concurrently with the transformed thread[44].

One approach is to generalize standard program representations, analyses, and trans-

formations to safely optimize multithreaded programs even in the presence of access

to shared data[65, 34, 35]

A more conservative approach is to ensure that the optimizations preserve the

semantics of the original program by first identifying regions of the program that

do not interact with other threads, then applying optimizations only within these

regions. The analysis problem is determining which statements may interact with

other threads and which may not. Escape analysis is an obvious analysis to use

for this purpose - it recognizes data that is captured within the current thread and

therefore inaccessible to other threads [62]

2.2.2 Data Race Detection

In an unsafe language like C, there are a number of program actions that are almost

always the result of programmer error, regardless of the context in which they occur.

Examples include array bounds violations and accessing memory after it has been

deallocated. If the program engages in these actions, it can produce behavior that is

very di�cult to understand. Several well-known language design and implementa-

tion techniques (garbage collection, array bounds checks) can completely eliminate

these kinds of errors. The cost is additional execution overhead and a loss of pro-

grammer control over aspects of the program’s execution. The result was that, for

many years, the dominant programming language (C) provided no protection at all

against this class of errors.

Chapter 2. Related Work 28

2.2.3 Pointer Analysis

Pointer analysis for sequential programs is relatively mature field [17]. This field

has been extended to cover multithreaded programs [58, 15, 23]. The importance

of pointer analysis comes from two reasons: the first is the importance of pointer

information for many compiler optimizations and corrections [64], and the second is

the growing interest in multithreading as a mainstream practise of programming.

memory safety analysis aims at statically proves that the program does not

treat pointers illegally according to the language syntax. El-Zawawy [15] introduced

type-systems as a framework to deal this problem. He present type systems for

flow-sensitive, flow-insensitive, and memory safety analysis. Another algorithm for

pointer analysis introduced by R. Rugina and M. C. Martin [58]. This algorithm is

designed to handle programs with structured parallel programs. For each pointer

and program point, the algorithm computes a conservative approximation of the

memory locations to which that pointer may point.

2.3 Summary

We summarize the related work in the following section.

Multi-threading is a promising area of research. The most e�cient challenging areas

are compilation and program analysis[34, 44, 18]. The field of program analysis aims

at collecting information about programs[51]. Analyzing may concentrate on whole

program, or focuses on each program point. There are many aspects of analyzing

multi-threaded programs: pointer analysis[15, 58], optimization uses [21, 39, 38, 35,

34], data race detection[59, 6] and deadlock detection [36, 3, 74].

A data race occurs very often in multi-threaded programs. It occurs when two

threads try to access the same location without proper synchronization, and one of

Chapter 2. Related Work 29

them is write [25]. The data race always causes program bugs errors. The output

of program depends on scheduling of accessing memory. Detecting data race is a

promising area of research, it has been studied extensively [22, 6, 54, 29, 49, 73].

The first methodology to detect data races is the static race detection[22]. Detec-

tors, in this strategy, determine whether a program will ever produce a data race

when run on all possible inputs. The second methodology is dynamic race detec-

tion, where potential races are detected at runtime by executing the program on

a given input.[66, 74]. In many detectors, data-race and deadlock bugs are bun-

dled together. Some static detectors, like Warlock[70], depends on the annotations

formed by the programmers to detect data-race and deadlock problems. Using the-

orem provers to detect many bugs including data race is the idea of extended static

checker for Java[22, 40]. Some dynamic detectors are developed in the scientific

parallel programming community[6, 13]. Others detectors detects data race in Java-

like programs [7, 72]. Eraser[66], as a dynamic detector, monitors programs during

execution and look for data-race bugs. In general, dynamic detectors have the ad-

vantage that they can check un-annotated programs.

Type systems are known to be a good framework for analyzing programs [37, 19].

Type systems have been extensively used in pointer analysis for both imperative

and multi-threaded programs [17, 15, 16]. Type systems have been used to detect

the memory safety of multi-threaded programs by El-Zawawy [15]. Type systems

used in code optimization. Partial redundancy elimination was performed via type

systems for imperative programs in [61], and for multi-threaded programs in[21].

Type systems also are used to prevent data-race and deadlocks in a specific language

Java[54].

PRE was originated by Morel and Renvoice [46]. They applied PRE using

static analysis and presented PRE as a general problem of global optimization using

Chapter 2. Related Work 30

boolean system of equations. [46] also presents an algorithm for global optimiza-

tion, which does not need control flow graph. E↵orts have been done to improve the

formulation of PRE [12]. The work in [76, 75] formulates classic and commulative

PRE as a maximum flow problem. PRE used as a framework and is extended to do

more optimizations as strength reduction [31].

3. PRE for Multi-threaded

Programs

Chapter 3

PRE for Multi-threaded Programs

3.1 Introduction

There are many methods for compiler optimization; a powerful one of them is partial

redundancy elimination (PRE). PRE eliminates redundant computations on some

but not necessarily all paths of programs. PRE is a complex optimization as it

consists of loop invariant code motion and common subexpression elimination. PRE

was established by Morel and Renvoise [46] where they introduce a more general

problem (as a system of boolean equations). Xue and Cai formulated speculative

PRE as a maximum flow problem [75]. Xue and Knoop proved that the classic PRE

is a maximum flow problem [76]. Saabas and Uustalu use type-systems framework

to approach this problem [61]. Some Optimizations have been added to PRE such

as strength reduction[31] and global value numbering[4]. All methods mentioned

above are established to operate on sequential programs.

In the present work, we achieve partial redundancy elimination for multi-threaded

programs which are widely used. Operating system is an example of system software

that depends on multi-threading. You can write your document in a word processor

while running an audio file, downloading a file from the internet, and/or scanning for

32

Chapter 3. PRE for Multi-threaded Programs 33

viruses (each of these tasks is considered a thread of computations). Web browser

as an example can explore your e-mail, while downloading a file in the background.

The key feature of multi-threaded programs is that many threads can be executed

at the same time. Consequently, when executing a thread there is an e↵ect that

comes from executing other threads. In general, when analyzing multi-threaded

programs, the e↵ect of all threads at the same time must be taken in account.

Hence, analyzing multi-threaded programs completely di↵ers from sequential ones.

Deducing and stating properties of programs can be done using type systems as

well as program analysis. Program analysis has algorithmic manner while type sys-

tems are more declarative and easy to understand with type derivations that provide

human-friendly format of justifications. We present a type system for optimizing

multi-threaded programs. Our type system depends on a new analysis, namely mod-

ified analysis and a function called concurrent modified, rather than on anticipability

analysis and conditional partial availability analysis used for the while language.

Organization of this chapter is as follow. In section 2 we introduce an operational

semantics for the language we study. Section 3 presents the concepts of modified

analysis and concurrent modified function. Also the soundness of modified analysis,

the anticipability analysis, and conditional partial availability analysis for multi-

threaded language are discussed in this section. In section 4, we present the type

system including the optimization component and prove its soundness. Section 5

and 6 outline related and future work, respectively.

Chapter 3. PRE for Multi-threaded Programs 34

3.2 Motivation

In this section we introduce the language we study (Fwhile), a motivating example,

and a natural semantics of Fwhile

3.2.1 Fwhile Language

We assume that our reader is familiar with data flow analysis. We introduce a

motivating example to show the importance and obstacles of applying PRE on

multi-threaded programs. We use a simple language which we call Fwhile. The

basic building blocks of Fwhile are literals l 2 Lit, statements s 2 Stm, arithmetic

expressions a 2 AExp and boolean expressions b 2 BExp. These blocks are defined

over a set of program variables x 2 Var and numerals n 2 Z in the following way:-

l ::= x | n

a ::= l| l0 + l1 | l0 ⇤ l1|...

b ::= l0 = l1 |l0  l1|...

s ::= x := a | skip | s0; s1 | if b then st else sf | while b do st|

fork{s1, s2, ..., sn}.

We use the following notation AExp+ for the non trivial arithmetic expressions i.e

(AExp+ = AExp\Lit) .

3.2.2 Motivating Example

The following is an example that motivates our research.

v := a� c;

u := a+ b;

fork{{y := a+ b; c = 2; z := a� c; };

Chapter 3. PRE for Multi-threaded Programs 35

{x := a+ b; z := a� c; }; }

In this example, expressions a+ b and a� c are evaluated before reaching the fork

statement, hence we can use their values in the fork statement. But, one of the

threads modifies the value of c hence we cannot use expressions containing c; because

we do not know when the thread contains this modification will be executed. After

applying our analysis the optimized version of the program will be:-

v := a� c;

t1 := a+ b;

u := t1;

fork{{y := t1; c = 2; z := a� c; };

{x := t1; z := a� c; }; }

Figure 3.1: Before Optimization

Chapter 3. PRE for Multi-threaded Programs 36

Figure 3.2: After Optimization

3.2.3 Natural Semantics

We use the semantics introduced by Mohamed El-Zawawy in [15]. We review the

semantics in this section. We define a State as a function from a set of variables

to integers: � 2 State, � : Var �! Z. The state assigns a value for each

variable. Expressions (arithmetic and boolean) are defined by semantic function

J�K 2 AExp [BExp * Z [{tt, ff} in denotational style. For a 2 AExp and

b 2 BExp we write JaK� and JbK� to denote the evaluations of expressions a and b

in a state �, respectively. We write � |= b to denote that JbK� = tt(i.e evaluation of

b in � is true). Statements are written in the form of evaluation relation ⌥�� !✓

State⇥Stm⇥State. The notation �[x 7! JaK�] denotes that the state is � rather

than �(x) = JaK�. Inference rules of the semantics are:

Chapter 3. PRE for Multi-threaded Programs 37

� ⌥�x := a ! �[x 7! JaK�] :=ns
� ⌥�skip ! �

skipns

� ⌥�s0 ! �
00

�
00 ⌥�s1 ! �

0

� ⌥�s0; s1 ! �0 compns

� |= b � ⌥�st ! �
0

� ⌥�if b then st else sf ! �0 if
tt
ns

� |=/ b � ⌥�sf ! �
0

� ⌥�if b then st else sf ! �0 if
ff
ns

� |= b � ⌥�st ! �
00

�
00 ⌥�while b do st ! �

0

� ⌥�while b do st ! �0 while
tt
ns

� |=/ b

� ⌥�while b do st ! �
while

ff
ns

�i ⌥�s✓(i) ! �i+1 8i 2 {1, 2, ...n}
�1 ⌥�fork{s1, s2, ..., sn} ! �n+1

FORKns

where ✓ is a permutation on {1, 2,, n}

The rule FORKns depends on the order of executing the threads. We assume

that order named ✓ which is a permutation on n (number of threads). In this rule

we assume that the threads will execute one by one.

3.3 Program Analysis

In this section we will introduce the analysis of the multithreaded programs. We

introduce type systems to help optimizing programs. Firstly, we introduce the mod-

ified analysis which tells which variables are modified. Secondly, we introduce a

concurrent modified function. Also, we introduce traditional anticipability analysis

and conditional partial availability analysis which are generalizations of the work of

[61] (with additional rules for multi-threaded statements).

3.3.1 Modified Analysis

Modified analysis computes for each program point which variables have been

modified. The type system is simple. It gathers the modified variables along the

path to the point. Type m ✓ Var is a set of variables. Modified analysis is a must

forward analysis. The subtyping is the revered set inclusion (i.e =df ◆).

Chapter 3. PRE for Multi-threaded Programs 38

Definition 1. For any program point, any state � and a type modified m ✓ Var,

we write � ✏ m (� entails m) iff m ✓ dom(�).

Type system is as follow :-

x := a : m ! m [{x}
m:=

skip : m ! m
mskip

s0 : m ! m
00
s1 : m00 ! m

0

s0; s1 : m ! m0 mcomp

st : m ! m
0

sf : m ! m
0

if b then st else sf : m ! m0 mif

st : m ! m

while b do st : m ! m
mwh

m  m0 s : m0 ! m
0
0 m

0
0  m

0

s : m ! m0 mconseq

s✓(i) : m ! mi 8i 2 {1, 2, ...n}
fork{s1, s2, ..., sn} : m !

S
1in

mi
mFORK

The type system is clear and simple. The rule m := adds the assigned variable to

pre type. Rules mskip,mconseq,mif and mwh are direct and similar to operational

semantics. Rule mconseq for strengthen the pre-type. Rule mFORK is for threading.

This rule computes the modified variables along fork statement by collecting all

modified variables over all threads.

The following two lemmas state properties about modified analysis:-

Lemma 1. Suppose s : m �! m
0 , where m , m

0 ✓ Var. Then m ✓ m
0.

Proof It is clear that the statement which actually changes the setm is assignment

statement where m
0 = m [{x} i.e m ✓ m

0.

Lemma 2. Suppose s : m0 �! m
00 and � ⌥�s ! �

0 , where m ,m
0
, m

00 ✓ Var.

Then s : m0 [m �! m
00 [m.

Proof We have m ✓ dom(�)) m
0 ✓ dom(�0). Then it is clear that:-

m [m
00 ✓ dom(�)) m

0 [m
00 ✓ dom(�0)

Chapter 3. PRE for Multi-threaded Programs 39

3.3.2 Soundness of modified analysis

The following theorem proves the soundness of modified analysis

Theorem 3. Suppose s : m ! m
0 and � ⌥�s ! �

0. Then if � ✏ m then �
0 ✏ m

0
.

Proof The proof is by structure induction of type derivation.

• Type derivation is m := and corresponding operational semantic is :=ns.

We have � ✏ m and �
0 = �[x 7! JaK�] which implies dom(�0) = dom(�)[{x}.

* m ✓ dom(�) =) m [{x} ✓ dom(�) [{x} =) m
0 ✓ dom(�0) =) �

0 ✏ m
0

• Type derivation is mskip the corresponding semantic is skipns

Let � ✏ m choosing �
0 = � and m

0 = m, then �
0 ✏ m

0

• Type derivation is mcomp and the corresponding operational semantic is

compns.

From premises we get:-

(i) � ⌥�s0 ! �
00
, s0 : m ! m

00 and � ✏ m =) �
00 ✏ m

00

(ii) �00 ⌥�s1 ! �
0
, s1 : m00 ! m

0 and �
00 ✏ m

00 =) �
0 ✏ m

0

from (i) and (ii) then we have � ✏ m =) �
0 ✏ m

0

• Type derivation is mif two cases arises:-

(1) Case � |= b then the corresponding operational semantic is if ttns

We have if b then st else sf : m ! m
0 and � ⌥�if b then st else sf ! �

0
.

From premises the following holds:

st : m ! m
0 and � ⌥�st ! �

0 then � ✏ m =) �
0 ✏ m

0

(2) Case � |=/ b then the corresponding operational semantic is if↵ns

We have if b then st else sf : m ! m
0 and � ⌥�if b then st else sf ! �

0
.

Chapter 3. PRE for Multi-threaded Programs 40

From premises the following holds:

sf : m ! m
0 and � ⌥�sf ! �

0 then � ✏ m =) �
0 ✏ m

0

• Type derivation is mwh, we have while b do st : m ! m.

(1) Case � |=/ b, the corresponding operational semantic is: while↵ns.

Same as skip statement proved above.

(2) Case � |= b we have the following operational semantic whilettns then

while b do st ⌘ st;while b do st applying composition rule stated above we

find

� ✏ m =) �
0 ✏ m

0

• Type derivation is mconseq and � ⌥�s ! �
0

� ✏ m =) � ✏ m0 (m  m0)

=) �
0 ✏ m

0
0 (s : m0 ! m

0
0 and � ⌥�s ! �

0)

=) �
0 ✏ m

0 (m0
0  m

0)

i.e � ✏ m =) �
0 ✏ m

0

• Type derivation is mFORK and the corresponding operational semantic is

FORKns. We prove that :-

�1 ✏ m =) �n+1 ✏
[

1in

mi

From premises we have s✓(i) : m ! mi, which by lemma 1 implies

m ✓ mi 8i 2 {1, 2 . . . , n}.

From lemma 2 and lemma 1 we can get :

s✓(1) : m ! m1

s✓(2) : m1 ! m1 [m2

Chapter 3. PRE for Multi-threaded Programs 41

s✓(3) : m1 [m2 ! m1 [m2 [m3

...

s✓(n) : m1 [m2 . . . [mn�1 ! m1 [m2 . . . [mn

To simplify the notations we let

M0 = m

M1 = m1

M2 = m1 [m2

...

Mn = m1 [m2 . . . [mn =
S

1in

mi

The previous sequence can be written as:-

s✓(i) : Mi�1 ! Mi, also we have �i ⌥�s✓(i) ! �i+1

Then we get:

�1 |= M0 =) �2 |= M1

�2 |= M1 =) �3 |= M2

...

�n |= Mn�1 =) �n+1 |= Mn

From last sequence, we conclude

�1 |= m =) �n+1 |= Mn

3.3.3 Concurrent Modified Function C

In this section we will present concurrent modified function C. We start by defining

sub-statement relation between statements.

Chapter 3. PRE for Multi-threaded Programs 42

Definition 2. For any two statements s and t, we say that t is a sub-statement of

s written as (t b s) i↵ :-

1. t=s or

2. s = s1; s2 and t b s1 or t b s2

We mean by t=s, that t is identically(syntactically) equivalent to s.

Definition 3. The concurrent modified function assigns a set of variables for each

program point, i.e.

C : stm �! Var :

1. at fork{s1, . . . , sn} statement :-

C(si) =
[

i 6=j

mj, where si : m ! mi

C(t) = C(si) for t b si

2. otherwise C(s) = '

3.3.4 Anticipability Analysis

We now present anticipability analysis. For each program point it computes which

non-trivial arithmetic expressions will be evaluated on all paths before any of their

operands are modified. In the typing rule we use eval(a) to denote {a} if a is non-

trivial expression and ' otherwise. For a 2 AExp+ we define :-

mod(x) =df {a|x 2 FV (a)} and mce(s) =df {a|a 2 mod(y).8y 2 C(s)}.

We use s to denote the full type derivation of s : m ! m
0.

Inference rules of the type system are as follow:-

Chapter 3. PRE for Multi-threaded Programs 43

x := a : (ant0\mod(x) [eval(a))\mce(x := a) ! ant0 skip : ant ! ant

s0 : ant ! ant
00
s1 : ant00 ! ant

0

s0; s1 : ant ! ant0

st : ant ! ant
0

sf : ant ! ant
0

if b then st else sf : ant ! ant0

st : ant ! ant

while b do st : ant ! ant

ant  ant0 s : ant0 ! ant
0
0 ant

0
0  ant

0

s : ant ! ant0

si : anti �! Ant
0\mce(si) 8i 2 {1, 2, ...n}

fork{s1, s2, ...sn} :
S

1in
anti �! Ant0.

The rules stated above follow the same line of corresponding rules introduced in

[61] for the while language. The novelty of our work comes from fitting the fork

statement into the type system of [61] and making necessary changes. We note that

if no thread exists then for each statement s in the program mce(s) = '. Besides the

rule of fork statement which characterizes the multi-threaded concept. These rules

prevent any modified expression (i.e modified in concurrent threads) from being used

from the start of fork statement. As anticipability analysis is backward analysis, we

remove modified expressions from Ant
0 of each statement. Also, in each assignment

statement we remove modified expressions. All of these removals are guided by the

set mce(s).

3.3.5 Partial availability Analysis

It computes for each program point which non-trivial arithmetic expressions has

already been evaluated and later not modified on some path through this program

point and also anticipable.

Inference rules of the type system are:-

x := a : (ant0\mod(x) [eval(a))\mce(x := a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0

Chapter 3. PRE for Multi-threaded Programs 44

skip : ant, cpav ! ant, cpav

s0 : ant, cpav ! ant
00
, cpav

00
s1 : ant00, cpav00 ! ant

0
, cpav

0

s0; s1 : ant, cpav ! ant0, cpav0

st : ant, cpav ! ant
0
, cpav

0
sf : ant, cpav ! ant

0
, cpav

0

if b then st else sf : ant, cpav ! ant0, cpav0
st : ant, cpav ! ant, cpav

while b do st : ant, cpav ! ant, cpav

ant, cpav  ant0, cpav0 s : ant0, cpav0 ! ant
0
0, cpav

0
0 ant

0
0, cpav

0
0  ant

0
, cpav

0

s : ant, cpav ! ant0, cpav0

si : anti, CPAV \mce(si) �! Ant
0\mce(si), cpav0i 8i 2 {1, 2, ...n}

fork{s1, s2, ...sn} :
S

1in
anti, CPAV �! Ant0,

S
1in

cpav0i

The rules of program statements follow the same line of corresponding rules intro-

duced in [61] for the while language. The novelty of our work comes from fitting the

fork statement into the type system of [61] and making necessary changes. Here we

excluded the expressions in concurrent modified of all threads of fork statement to

avoid using these expressions after exiting fork statement.

3.4 Optimization Component

In this section we will introduce a type system with optimization components for

multi-threaded programs. We mean by the notation s : ant, cpav ! ant
0
, cpav

0
,! s⇤

that, statement s with complete type system m, ant and cpav is optimized to s⇤

Inference rules of the type system are:-

a /2 cpav a /2 ant
0\mod(x)

x := a : (ant0\mod(x) [eval(a))\mce(x := a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0 ,! x := a
:=1pre

a /2 cpav a 2 ant
0\mod(x)

x := a : (ant0\mod(x) [eval(a))\mce(x := a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0 ,! nv(a) = a;x := nv(a)
:=2pre

a 2 cpav

x := a : (ant0\mod(x) [eval(a))\mce(x := a), cpav ! ant0, (cpav [aval(a)\mod(x)) \ ant0 ,! x := nv(a)
:=3pre

skip : ant, cpav ! ant, cpav ,! skip
skippre

s0 : ant, cpav ! ant
00
, cpav

00
,! s

0
0 s1 : ant00, cpav00 ! ant

0
, cpav

0
,! s

0
1

s0; s1 : ant, cpav ! ant0, cpav0 ,! s00, s
0
1

comppre

Chapter 3. PRE for Multi-threaded Programs 45

st : ant, cpav ! ant
0
, cpav

0
,! s

0
t sf : ant, cpav ! ant

0
, cpav

0
,! s

0
f

if b then st else sf : ant, cpav ! ant0, cpav0 ,! if b then s0t else s0f
ifpre

st : ant, cpav ! ant, cpav ,! s
0
t

while b do st : ant, cpav ! ant, cpav ,! while b do s0t
whilepre

ant, cpav  ant0, cpav0 s : ant0, cpav0 ! ant
0
0, cpav

0
0 ,! s

0
ant

0
0, cpav

0
0  ant

0
, cpav

0

s : ant, cpav ! ant0, cpav0 ,! [nv(a) := a|a 2 cpav0\cpav]; s0; [nv(a) := a|a 2 cpav0\cpav00]
conseqpre

si : anti, CPAV \mce(si) �! Ant
0\mce(si), cpav0i 8i 2 {1, 2, ...n}

fork{s1, s2, ...sn} :
S

1in
anti, CPAV �! Ant0,

S
1in

cpav0i ,! fork{s01, s02, ...s0n}
forkpre

The rules of program statements follow the same line of corresponding rules intro-

duced in [61] for the while language, except the fork statement. The novelty of our

work comes from fitting the fork statement into the type system of [61] and making

necessary changes. Our new analysis also a↵ect the component of optimizations as

in the rule forkpre, which achieves optimizations via optimizing each thread of its

components.

3.4.1 Semantic soundness

We will present the soundness of the type system for PRE in the sense preservation

of semantics, using relational method [2]. An original program and its optimized

version simulate each other up to similarity relation s on their states, indexed by

conditional partial avialabilty types of program point[61].

Now we will define similarity relation s. Let � scpav �⇤ denote that two states

� and �⇤ of an original and optimized program agree on the auxiliary variables wrt.

cpav ✓ AExp+ in the sense that 8x 2 Var.�(x) = �⇤(x) and 8a 2 cpav.JaK� =

�⇤(nv(a)). Soundness can be obtained by the following theorem:-

Theorem 1. Soundness of Optimization Component

If s : ant, cpav ! ant
0
, cpav

0
,! s⇤ and � scpav �⇤ then

- � ⌥�s ! �
0 implies the existence of �0

⇤ such that �0 scpav0 �
0
⇤ and �⇤ ⌥�s⇤ ! �

0
⇤, -

�⇤ ⌥�s⇤ ! �
0
⇤ implies the existence of �0 such that �0 scpav0 �

0
⇤ and � ⌥�s ! �

0.

Chapter 3. PRE for Multi-threaded Programs 46

Proof The two parts of theorem are similar. We will proof the first part. The

second is the same.

Given s : ant, cpav ! ant
0
, cpav

0
,! s⇤, � scpav �⇤ and � ⌥�s ! �

0 , we have to find

�
0
⇤ such that �0 scpav0 �

0
⇤ and �⇤ ⌥�s⇤ ! �

0
⇤.

The proof is by induction on the typing derivation. We will prove the following

non-trivial cases.

• Case :=pre : The type derivation is of the form

x := a : ant, cpav ! ant0, cpav0 ,! s⇤

where ant =df ant
0\mod(x)[eval(a), cpav0 =df (cpav[eval(a)\mod(x))\ant

0

We note that in particular this means that cpav [eval(a) ◆ cpav
0 and cpav

0 \

mod(x) = �. The corresponding given semantic derivation must be of the form

� ⌥�x := a ! �[x 7! JaK�]

hence �
0 = �[x 7! JaK�]

– Subcase :=1pre: We know that a /2 cpav. We also know that either

a /2 ant
0 or a 2 mod(x), so cpav ◆ cpav

0. Moreover, s⇤ =df x := a.

We have the semantic derivation

�⇤ ⌥�x := a ! �0
⇤

where �
0
⇤ =df �⇤[x 7! JaK�⇤]. From � scpav �⇤ it follows that

JaK� = JaK�⇤, so that , using cpav ◆ cpav
0 as well, we can conclude

�
0 = �[x 7! JaK�] scpav0 �⇤[x 7! JaK�] = �⇤[x 7! JaK�⇤] = �

0
⇤

– Subcase :=2pre: We have that a /2 cpav. We also have that a is nontrivial

and cpav [{a} ◆ cpav
0. Also s⇤ =df nv(a) := a; x := nv(a). We have the

Chapter 3. PRE for Multi-threaded Programs 47

semantic derivation

�⇤ ⌥�nv(a):=a!�00
⇤ �00

⇤ ⌥�x:=nv(a)!�0
⇤

�⇤ ⌥�nv(a) := a; x := nv(a) ! �0
⇤

where �00
⇤ =df �⇤[nv(a) 7! JaK�⇤] and �

0
⇤ =df �

00
⇤ [x 7! �

00
⇤(nv(a))] = �

00
⇤ [x 7!

JaK�⇤]. From � scpav �⇤ it is immediate that � scpav[{a} �⇤[nv(a) 7!

JaK�] = �⇤[nv(a) 7! JaK�⇤ = �
00] and therefore by cpav [{a} ◆ cpav

0 we

have �
0 = �[x 7! JaK�] scpav0 �

00
⇤ [x 7! JaK�] = �

00
⇤ [x 7! JaK�⇤ = �

0
⇤].

– Subcase :=3pre: We have that a 2 cpav, soit follows that cpav ◆ cpav
0.

We have s⇤ =df x := nv(a). We have the semantic derivation

�⇤ ⌥�x := nv(a) ! �0
⇤

where �0
⇤ =df �⇤[x 7! �⇤(nv(a))]. We know that a 2 cpav, so from � scpav

�⇤ we learn JaK� = �⇤(nv(a)). Further, using also that cpav ◆ cpav
0, we

realize that �0 = �[x 7! JaK�] scpav0 �⇤[x 7! JaK�] = �⇤[x 7! �⇤(nv(a))] =

�⇤.

• Case conseqpre: The type derivation is of the form

...

s : ant0, cpav0 ! ant
0
0, cpav

0
0 ,! s⇤

s : ant, cpav ! ant0, cpav0 ,! s0; s⇤; s00

where (ant, cpav)  (ant0, cpav0), (ant00, cpav
0
0)  (ant0, cpav0),

s
0 =df [nv(a) = a|a 2 cpav0\cpav] and s

00 =df [nv(a) = a|a 2 cpav
0\cpav00].

First we find �0 such that �⇤ ⌥�s
0 ! �0 and � scpav0 �0.

We have the semantic derivation �⇤ ⌥�s0!�0

where �0 =df �⇤[nv(a) 7! JaK�⇤|a 2 cpav0\cpav]. From � scpav �⇤ using

Chapter 3. PRE for Multi-threaded Programs 48

cpav ✓ cpav0 we get that:-

� scpav0 �⇤[nv(a) 7! JaK�|a 2 cpav0\cpav]

� scpav0 �⇤[nv(a) 7! JaK�⇤|a 2 cpav0\cpav]

� scpav0 �0

since every expression in the di↵erence of cpav0 and cpav is explicitly made

equal to its corresponding auxiliary variable and no variables from Var are

modified. From the induction hypothesis we obtain that there is a state �1

such that �0 ⌥�s⇤ ! �1 and �
0 scpav00

�1. It is now enough to show that there

is a state �⇤ such that �1 ⌥�s
00 ! �

0
⇤ and �

0 scpav0 �
0
⇤. Similarly for the case of

s
0, we have the derivation

�1 ⌥�s00 ! �0
⇤

where �
0
⇤ =df �1[nv(a) 7! JaK�1|a 2 cpav

0\cpav00]. Again it is easy to realize

that �0 scpav00
�1 with cpav

0
0 ✓ cpav

0 gives us:-

�
0 scpav0 �1[nv(a) 7! JaK�0|a 2 cpav

0\cpav00]

�
0 scpav0 �1[nv(a) 7! JaK�1|a 2 cpav

0\cpav00]

�
0 scpav0 �

0
⇤

• Case forkpre : Soundness of the fork statement is as follow:

We have si : anti, CPAV \mce(si) �! Ant
0\mce(si), cpav0i ,! s

0
i
.

If fork{s1, s2, ...sn} : a, c �! a
0
, c

0
,! fork{s01, s02, ...s0n} and �1 sc �

⇤
1

where a =
S

1in

anti, c = CPAV, a
0 = Ant

0
, c

0 =
S

1in

cpavi then we

have to find � such that:

Chapter 3. PRE for Multi-threaded Programs 49

if �1 ⌥�fork{s1, s2, ..., sn} ! �n+1 then �n+1 sc0 � and �
⇤
i
⌥�fork{s01, s02, ...s0n} !

�. The following is given:

if si : anti, CPAV \mce(si) �! Ant
0\mce(si), cpav0i ,! s

0
i
and �j sci �

⇤
j

(where j = ✓(i) and ci = CPAV \mse(si)) then:

�i ⌥�sj ! �i+1 implies the existence of �⇤
i+1 such that:

�
⇤
i+1 scpavj �i+1 and �

⇤
i
⌥�sj ! �

⇤
i+1

Choosing �
⇤
i+1 = �i+1 , our choice is amenable where, it leads to the following:-

�
⇤
i
⌥�s

0
j
! �

⇤
i+1 =) �

⇤
1 ⌥�fork{s01, s02, ...s0n} ! �

⇤
n+1 . . . i

�i+1 scpavj �
⇤
i+1 =) �

⇤
n+1 sc0 �n+1 . . . ii

from i , ii and choosing � = �
⇤
n+1 the proof is done.

3.5 Conclusion and Future Work

In this chapter the main contribution is the application of PRE to a multithreaded

programming language. Up to our knowledge, this is the first deal with this problem.

We use type systems as a tool to solve the problem. We designed a simple type

system for optimizing multi-threaded programs. We approach the problem in a

simple way; we use usual PRE with simple modifications. We look for variables that

have been modified in other threads and exclude the expressions that contain any

of the modified variables. For future work, we study more complicated optimization

and consider using other tools. Many modifications can be applied.

4. Conclusion and Future Work

Chapter 4

Type Systems Based Data Race

Detector.

4.1 Introduction

Developing and debugging software that depend on multi-threading is a trickly mis-

sion because of ingrained concurrency and indeterminism. There are many bugs

occur according to these properties. Detecting and preventing these bugs are im-

portant areas of research. Bugs have several forms. The most extensively studied

one is data-race: two concurrent threads accessing the same shared variable with-

out proper synchronization. Data-race detector is a tool that determines whether

a program is a data-race free or not. Two approaches are followed when develop-

ing detectors: static approach, and dynamic approach. Static detectors determine

whether a program produce a data-race regardless of inputs of the program. Apart

from static detectors, dynamic detectors determine whether a program produce a

data-race of a given inputs at execution of the program.

The advantages of static detectors are consideration of di↵erent execution path

(more elaborate), and the soundness of detector, i.e proving the bug-freeness of

51

Chapter 4. Type Systems Based Data Race Detector. 52

programs. Examples of static detectors [29, 49, 73, 28]. On the other hand, dynamic

detectors like [74, 66, 77] track program execution and repot a data-race problem if

the program follow a certain concurrency order. These tools produce relevant result,

according to order of execution or program inputs, and can not cover all execution

paths; so are not sound.

Type systems can infer and gather information about programs as well as achiev-

ing program analysis. The merits of using type systems are attesting and rationaliza-

tion of properties of programs directed by their phrase structures. Type systems are

actually su�cient frameworks for describing data flow analysis . A general method

for producing such description was presented [37].

Type systems are used as a framework for analyzing multi-threaded programs as

well as imperative programs. In[15], type systems were used as a framework for

pointer analysis for multi-threaded programs. In[21], type systems were used as a

framework for eliminating redundancies in multi-threaded programs.

In this chapter we present a static detector. We introduce a type system that

detects data-race problem for multi-threaded programs of a simple languagem-while.

We also prove the soundness of proposed type system. The rest of this chapter is

organized as follows. Section 2 presents the language, a motivation example, and

an operational semantics for the language. Read type system and the proof of its

soundness are introduced in section 3. In section 4, we introduce safety type system

and proof for its soundness. Realted and future works are outlined in section 5 and

6 respectively.

Chapter 4. Type Systems Based Data Race Detector. 53

4.2 Motivation

In this section, we will present a simple example that demonstrates our motivations

for this research. Firstly we will define a simple language, called m-while, that

supports the multi-threading concepts. In this language, statements s 2 Stm,

arithmetic expressions a 2 AExp and boolean expressions b 2 BExp are defined

over a set of program variables x 2 Var in the following way:-

l ::= x | n

a ::= l| l0 + l1 | l0 ⇤ l1|...

b ::= l0 = l1 |l0  l1|...

s ::= x := a | skip | s0; s1 | if b then st else sf | while b do st|

fork {s1}, {s2}, ..., {sn} endfork.

The following segment of a program motivates our work:-

a := 4

b := 6;

x := a+ b;

fork

{ y := a+ b; z := b+ 5; },

{ a := a+ 5; w := a+ b; },

{ x := x+ 4; },

endfork;

This code shows that the variable a accessed by two threads; in the first thread

with read operation (y := a + b;) and in the other thread with write operation

(a := a+ 1;). In this case data-race problem occurs.

Chapter 4. Type Systems Based Data Race Detector. 54

4.2.1 Operational Semantics

The semantics is given in terms of states. The state is a pair, � = (R,M), where

R is a set of variables accessed by read operation, and M is a store. A store is

a mapping from variables to integers M 2 Store =df Var * Z. The boolean

and arithmetical expressions are interpreted as truth values and integers according

to stores by the semantic function J�K 2 AExp [BExp ! Stores ! Z. For

arithmetic expression a 2 AExp , JaK� denotes the arithmetic evaluation of a in the

state �. For boolean expression b 2 BExp, JbK� denotes the truth value of b in the

state �. We write � |= b to mean that JbK� = tt. We note that FV(a) is the set of

free variables of expression a The operational semantics are defined by the following

rules:-

x := a : (R,M) ! (R [FV(a),M[x 7! JaKM])
:=os

skip : (R,M) ! (R,M)
skipos

s0 : (R,M) ! (R00
,M00) s1 : (R00

,M00) ! (R0
,M0)

s0; s1 : (R,M) ! (R0,M0)
seqos

� |= b st : (R,M) ! (R0
,M0)

if b then st else sf : (R,M) ! (R0,M0)
iftrueos

� |=/ b sf : (R,M) ! (R0
,M0)

if b then st else sf : (R,M) ! (R0,M0)
iffalseos

� |= b st : (R,M) ! (R00
,M00) while b do st : (R00

,M00) ! (R0
,M0)

while b do st : (R,M) ! (R0,M0)
whiletos

� |=/ b

while b do st : (R,M) ! (R,M)
whilefos

s✓(i) : (R,Mi) ! (Ri,Mi+1) 8i 2 {1, 2, ...n}
fork {s1}, {s2}, ..., {sn} endfork : (R,M1) ! (

S
i
Ri,Mn+1)

forkos

where ✓ is a permutation on {1, 2,, n}

The rules show that the assignment statement actually changes the state; the free

variables of the expression that has been evaluated are added to read variables, and

Chapter 4. Type Systems Based Data Race Detector. 55

the store assigns new value for the variable being assigned a new value. The rules

for imperative statements skip, sequences, if, and while changing the pre-state as

usual for their classical meaning. The last rule (fork statement), that characterizes

the multi-threading, describes that the fork statement changes a state using the

states of each thread. One can see that our description of states helps in proving

the soundness of our proposed type systems.

4.3 Read Type System

In this section, we introduce read type system. At each program point, the read type

system determines the variables that have been accessed with a read operation. This

type system acts as a flag to discover the overlapping of read type system and the

concurrent modified set. A program point has type r ✓ V ar, if all variable in r

are accessed by read operations (from beginning of the program to this point). The

sub-typing is the set inclusion, i.e. r  r
0 i↵ r ✓ r

0.

The rules of read type system will be as follow:-

x := a : r ! r [FV(a)
:=r

skip : r ! r
skipr

s0 : r ! r
00
s1 : r00 ! r

0

s0; s1 : r ! r0
seqr

st : r ! r
0

sf : r ! r
0

if b then st else sf : r ! r0
ifr

st : r ! r
0

while b do st : r ! r0
whiler

r  r1 s : r1 ! r2 r2  r
0

s : r ! r0
conseqr

s✓(i) : r ! ri 8i 2 {1, 2, ...n}
fork {s1}, {s2}, ..., {sn} endfork : r !

S
ri

forkr

Read Type System for m-while language.

The first rule :=r adds the free variables of computed expression to the pre-

type. The rules skipr, seqr, ifr and whiler a↵ect pre-type as expected considering

Chapter 4. Type Systems Based Data Race Detector. 56

their classical meaning. The rule (conseqr) is important for weakening the pre-type

and strengthen the post-type. For the rule (forkr) which characterizes the multi-

threading, the post-type of fork statement is the union of all post-types of di↵erent

threads.

4.3.1 Soundness of Read Type System.

In this section, we prove the soundness of read type system. Firstly, the following

definition is introduced:-

Definition 4. For a state � = (R,M), we say that � entails r, where r ✓ Var is

the read type set, if r ✓ R. This is written as follow:- � ` r () r ✓ R

The soundness of the concerned type system is introduced in the following the-

orem.

Theorem 1. If s : � ! �
0 and s : r ! r

0, then � ` r =) �
0 ` r

0

Proof The proof is by structural induction on rules, we demonstrate some cases:-

• Case :=r.

We use the operational rule :=os. Let � ` r =) r ✓ R. Hence we have

r
0 = r [FV(a) ✓ R [FV(a) ✓ R0 =) �

0 ` r
0

• Case forkr.

We use the operational rule forkos. From premises the following are satisfied:

s✓(i) : r �! ri, and s✓(i) : �i = (R,Mi) ! �i+1 = (Ri,Mi+1).

i.e. �i ` r =) �i+1 ` ri or equivalently r ✓ R =) ri ✓ Ri

It is enough to prove that:-

�1 ` r =) �n+1 `
[

i

ri.

Chapter 4. Type Systems Based Data Race Detector. 57

But, �1 ` r =) r ✓ R

=) ri ✓ Ri

=)
S
i

ri ✓
S
i

Ri

=) �n+1 `
S
i

ri.

4.4 Safety Type System

In this section, we introduce safety type system. Each program point has a type

d 2 {true, false}, where true means that the program is safe at this point , and

false means that the program is unsafe at this point.In the following, C(s) denotes

the concurrent modified set of statement s introduced in[21], and p1 ^ p2 means the

logical conjunction of boolean variables p1 and p2.

The following definition is needed:-

Definition 5. The truth value of a set A is defined as follow:-

Tr(A) =

8
><

>:

true A = �

false A 6= �

For any two sets A and B the following properities are satisfied

Tr(A) ^ Tr(B) = Tr(A [B) and Tr(A) _ Tr(B) = Tr(A \ B)

The rules of type system is defined as follow:-

x := a : r �! r
0

x := a : d d ^ Tr(r0 \ C(x := a))
:=

skip : d d
skip

s0 : d d
00
s1 : d00 d

0

s0; s1 : d d0
seq

Chapter 4. Type Systems Based Data Race Detector. 58

st : d d
0

sf : d d
0

if b then st else sf : d d0
if

st : d d
0

while b do st : d d0
while

s✓(i) : di di+1 8i 2 {1, 2, ...n}
fork {s1}, {s2}, ..., {sn} endfork : d dn+1

fork

Safety Type System for m-while language.

The first rule := checks the overlapping of concurrent modified set and the read set.

All other rules are straight forward. In general we conclude that, the program is

safe if each program point has a type true otherwise the program is unsafe.

4.4.1 Soundness of Safety Type System

Firstly we define the entailment of a type d in state � = (R,M) with respect to set

A as follow:-

� |=A d , d = Tr(R \ A)

The following theorem states and proves the soundness of the safety type system.

Theorem 1. Let s : � ! �
0, and s : d d

0 then

� |=C (s)d) �
0 |= C(s)d0

Proof

The proof is by structural induction on rules, we present some cases:-

• Case :=

Suppose x := a : � �! �
0, and x := a : r �! r

0, where � = (R,M),

�
0 = (R0

,M0), r0 = r [FV(a), and R0 = R [FV(a).

From premises, r ✓ R =) r
0 ✓ R0.

Let � |=C(x:=a) d. Then d = Tr(R \ C(x := a)).

Chapter 4. Type Systems Based Data Race Detector. 59

Now d
0 = d ^ Tr(r0 \ C(x := a))

= Tr(R \ C(x := a)) ^ Tr(r0 \ C(x := a))

= Tr((R \ C(x := a)) [(r0 \ C(x := a)))

= Tr((R [r
0) \ C(x := a))

= Tr((R [r [FV(a)) \ C(x := a))

= Tr((R [FV(a)) \ C(x := a))

= Tr((R0 \ C(x := a))

=) �
0 |=C(x:=a) d

0

i.e. � |=C(x:=a) d =) �
0 |=C(x:=a) d

0 which completes the proof.

• Case seq

We use the operational semantic rule seqos. From premises we have:-

� |=C(s0) d =) �
00 |=C(s0) d

00, and �
00 |=C(s1) d

00 =) �
0 |=C(s1) d

0,

From the definition of concurrent modified function given by [21], we can

conclude that for a sequence of statements s0; s1 the following satisfied:-

C(s0) = C(s1) = C(s0; s1)

i.e. � |=C(s0;s1) d =) �
00 |=C(s0;s1) d

00, and �
00 |=C(s0;s1) d

00 =) �
0 |=C(s0;s1) d

0,

then we can conclude that � |=C(s0;s1) d =) �
0 |=C(s0;s1) d

0.

• Case fork.

To prove this rule we can consider the fork statement as the following sequence

of statements fork {s1}, {s2}, ..., {sn} endfork = s✓(1); s✓(2); ...; s✓(n). Now

applying the sequence rule produce the proof.

Chapter 4. Type Systems Based Data Race Detector. 60

4.4.2 Implementation

We implement a detector based on our type system. This program checks any

program of m-while language for safety. For a program of m-while language, the

detector computes the modified sets of each program point and computes read sets

for each program point.Then the intersection of these two sets is calculated.

4.5 Conclusion and Future Work

Mathematical domains and maps between domains can be used to mathematically

represent programs and data structures. This representation is called denotation se-

mantics of programs [14, 20]. One of our directions for future research is to translate

concepts of race detection to the side of denotation semantics. Doing so provides

a good tool to mathematically study in deep race detection. Then obtained results

can be translated back to the side of programs and data structures.

In this chapter we present a static data race detector. We use type systems as

a frame work to implement this detector. Firstly, we present read type system

which computes the variables accessed by read operations. Secondly, we present

safe type system. This type system is based on read type system and decides if a

program contains data race problems or not. The soundness of these type systems

are discussed in this chapter as well. For future work we plan to use type systems

as a tool to solve more complicated problems (like deadlock, pointer dangling). We

expect type systems to be an amenable and trustable framework to deal with static

analyses. We also plan to improve our work in many directions including extending

our language to support the object-oriented concepts.

Bibliography

[1] J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1980.

[2] Nick Benton. Simple relational correctness proofs for static analyses and pro-

gram transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’04, pages 14–25,

New York, NY, USA, 2004. ACM.

[3] Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz. Symbolic data flow

analysis for detecting deadlocks in ada tasking programs. In Proceedings of the

5th Ada-Europe International Conference on Reliable Software Technologies,

Ada-Europe ’00, pages 225–237, London, UK, 2000. Springer-Verlag.

[4] Preston Briggs and Keith D. Cooper. E↵ective partial redundancy elimination.

In Proceedings of the ACM SIGPLAN 1994 conference on Programming lan-

guage design and implementation, PLDI ’94, pages 159–170, New York, NY,

USA, 1994. ACM.

[5] Dmitri Bronnikov. A practical adoption of partial redundancy elimination.

SIGPLAN Not., 39:49–53, August 2004.

[6] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall,

and Andrew F. Stark. Detecting data races in cilk programs that use locks.

61

BIBLIOGRAPHY 62

In Proceedings of the tenth annual ACM symposium on Parallel algorithms and

architectures, SPAA ’98, pages 298–309, New York, NY, USA, 1998. ACM.

[7] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek

Sarkar, and Manu Sridharan. E�cient and precise datarace detection for mul-

tithreaded object-oriented programs. In Proceedings of the ACM SIGPLAN

2002 Conference on Programming language design and implementation, PLDI

’02, pages 258–269, New York, NY, USA, 2002. ACM.

[8] Frederick Chow. A Portable, Machine-independent Global Optimizer – Design

and Measurements. PhD thesis, Stanford University, 1984.

[9] Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. Operator

strength reduction. ACM Trans. Program. Lang. Syst., 23:603–625, Septem-

ber 2001.

[10] Benjamin Cummings. Object oriented design with applications. page SEARCH

IT, 1991.

[11] D. M. Dhamdhere. Practical adaption of the global optimization algorithm of

morel and renvoise. ACM Trans. Program. Lang. Syst., 13:291–294, April 1991.

[12] Dhananjay M. Dhamdhere. E-path–pre: Partial redundancy elimination made

easy. SIGPLAN Not., 37:53–65, August 2002.

[13] Anne Dinning and Edith Schonberg. Detecting access anomalies in programs

with critical sections. In Proceedings of the 1991 ACM/ONR workshop on

Parallel and distributed debugging, PADD ’91, pages 85–96, New York, NY,

USA, 1991. ACM.

[14] A. Mohamed El-Zawawy. Semantic spaces in Priestly form. PhD thesis, Brim-

ingham University, 2006.

BIBLIOGRAPHY 63

[15] Mohamed El-Zawawy. Flow sensitive-insensitive pointer analysis based memory

safety for multithreaded programs. In Beniamino Murgante, Osvaldo Gervasi,

Andrs Iglesias, David Taniar, and Bernady Apduhan, editors, Computational

Science and Its Applications - ICCSA 2011, volume 6786 of Lecture Notes in

Computer Science, pages 355–369. Springer Berlin / Heidelberg, 2011.

[16] Mohamed A. El-Zawawy. Probabilistic pointer analysis for multithreaded pro-

grams. ScienceAsia, 47, December 2011.

[17] Mohamed A. El-Zawawy. Program optimization based pointer analysis and

live stack-heap analysis. International Journal of Computer Science Issues, 8,

March 2011.

[18] Mohamed A. El-Zawawy. Dead code elimination based pointer analysis for

multithreaded programs. Journal of the Egyptian Mathematical Society, 2012.

[19] Mohamed A. El-Zawawy and N. Daoud. New error-recovery techniques for

faulty-calls of functions. Computer and Information Science, To be appeared.

[20] Mohamed A. El-Zawawy and Achim Jung. Priestley duality for strong proximity

lattices. Electronic Notes in Theoretical Computer Science, 158(0):199 – 217,

2006. Proceedings of the 22nd Annual Conference on Mathematical Foundations

of Programming Semantics (MFPS XXII).

[21] Mohamed A. El-Zawawy and Hamada A. Nayel. Partial redundancy elimina-

tion for multi-threaded programs. IJCSNS International Journal of Computer

Science and Network Security, 11:127–133, October 2011.

[22] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,

James B. Saxe, and Raymie Stata. Extended static checking for java. In

Proceedings of the ACM SIGPLAN 2002 Conference on Programming language

BIBLIOGRAPHY 64

design and implementation, PLDI ’02, pages 234–245, New York, NY, USA,

2002. ACM.

[23] Prodromos Gerakios, Nikolaos Papaspyrou, and Konstantinos Sagonas. Race-

free and memory-safe multithreading: design and implementation in cyclone. In

Proceedings of the 5th ACM SIGPLAN workshop on Types in language design

and implementation, TLDI ’10, pages 15–26, New York, NY, USA, 2010. ACM.

[24] Michael J. C. Gordon. The Denotational Description of Programming Lan-

guages: An Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

1979.

[25] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking by

context inference. In Proceedings of the ACM SIGPLAN 2004 conference on

Programming language design and implementation, PLDI ’04, pages 1–13, New

York, NY, USA, 2004. ACM.

[26] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Pro-

ceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, PASTE ’01, pages 54–61, New York, NY,

USA, 2001. ACM.

[27] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12:576–580, October 1969.

[28] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data race

detection for concurrent programs with asynchronous calls. In Proceedings of

the the 7th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering,

ESEC/FSE ’09, pages 13–22, New York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 65

[29] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. Fast

and accurate static data-race detection for concurrent programs. In Proceedings

of the 19th international conference on Computer aided verification, CAV’07,

pages 226–239, Berlin, Heidelberg, 2007. Springer-Verlag.

[30] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred

Chow. Partial redundancy elimination in ssa form. ACM Trans. Program. Lang.

Syst., 21:627–676, May 1999.

[31] Robert Kennedy, Fred C. Chow, Peter Dahl, Shin-Ming Liu, Raymond Lo, and

Mark Streich. Strength reduction via ssapre. In Kai Koskimies, editor, CC,

volume 1383 of Lecture Notes in Computer Science, pages 144–158. Springer,

1998.

[32] Jens Knoop, Oliver Rüthing, and Bernhard Ste↵en. Lazy code motion. In

Proceedings of the ACM SIGPLAN 1992 conference on Programming language

design and implementation, PLDI ’92, pages 224–234, New York, NY, USA,

1992. ACM.

[33] Jens Knoop, Oliver Rüthing, and Bernhard Ste↵en. Optimal code motion:

theory and practice. ACM Trans. Program. Lang. Syst., 16:1117–1155, July

1994.

[34] Jens Knoop and Bernhard Ste↵en. Code motion for explicitly parallel programs.

In Proceedings of the seventh ACM SIGPLAN symposium on Principles and

practice of parallel programming, PPoPP ’99, pages 13–24, New York, NY,

USA, 1999. ACM.

[35] Jens Knoop, Bernhard Ste↵en, and Jürgen Vollmer. Parallelism for free: e�-

cient and optimal bitvector analyses for parallel programs. ACM Trans. Pro-

gram. Lang. Syst., 18:268–299, May 1996.

BIBLIOGRAPHY 66

[36] Eric Koskinen and Maurice Herlihy. Dreadlocks: e�cient deadlock detection.

In Proceedings of the twentieth annual symposium on Parallelism in algorithms

and architectures, SPAA ’08, pages 297–303, New York, NY, USA, 2008. ACM.

[37] Peeter Laud, Tarmo Uustalu, and Varmo Vene. Type systems equivalent to

data-flow analyses for imperative languages. Theor. Comput. Sci., 364:292–

310, November 2006.

[38] Jaejin Lee, Samuel P. Midki↵, and David A. Padua. A constant propagation

algorithm for explicitly parallel programs. Int. J. Parallel Program., 26:563–

589, October 1998.

[39] Jaejin Lee, David A. Padua, and Samuel P. Midki↵. Basic compiler algorithms

for parallel programs. In Proceedings of the seventh ACM SIGPLAN symposium

on Principles and practice of parallel programming, PPoPP ’99, pages 1–12,

New York, NY, USA, 1999. ACM.

[40] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking java programs

via guarded commands. In Proceedings of the Workshop on Object-Oriented

Technology, pages 110–111, London, UK, 1999. Springer-Verlag.

[41] B. Liskov and J. Guttly. Abstraction and specification in software development.

MIT press, Cambridge, MA, USA, 1986.

[42] Jacques Loeckx, Kurt Sieber, and Ryan D. Stansifer. The foundations of pro-

gram verification. John Wiley & Sons, Inc., New York, NY, USA, 1984.

[43] Ernest G Manes. Algebraic approaches to program semantics. Springer-Verlag

New York, Inc., New York, NY, USA, 1986.

BIBLIOGRAPHY 67

[44] S. Midki↵ and D. Padua. Issues in the optimization of parallel programs. In

Proceedings of 1990 International Conference on Parallel Processing, pages 105–

113, 1990.

[45] Robert Milne and C. Strachey. A Theory of Programming Language Semantics.

Halsted Press, New York, NY, USA, 99th edition, 1977.

[46] E. Morel and C. Renvoise. Global optimization by suppression of partial re-

dundancies. Commun. ACM, 22:96–103, February 1979.

[47] Steven S. Muchnick. Advanced compiler design and implementation. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[48] Steven S. Muchnick and Neil D. Jones. Program Flow Analysis: Theory and

Application. Prentice Hall Professional Technical Reference, 1981.

[49] Mayur Naik, Alex Aiken, and John Whaley. E↵ective static race detection for

java. In Proceedings of the 2006 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’06, pages 308–319, New York, NY,

USA, 2006. ACM.

[50] Phung Hua Nguyen and Jingling Xue. Strength reduction for loop-invariant

types. In Proceedings of the 27th Australasian conference on Computer science

- Volume 26, ACSC ’04, pages 213–222, Darlinghurst, Australia, Australia,

2004. Australian Computer Society, Inc.

[51] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[52] Karl J. Ottenstein. A simplified framework for reduction in strength. IEEE

Trans. Softw. Eng., 15:86–92, January 1989.

BIBLIOGRAPHY 68

[53] V. K. Paleri, Y. N. Srikant, and P. Shankar. Partial redundancy elimination:

a simple, pragmatic, and provably correct algorithm. Sci. Comput. Program.,

48:1–20, July 2003.

[54] Pratibha Permandla, Michael Roberson, and Chandrasekhar Boyapati. A type

system for preventing data races and deadlocks in the java virtual machine

language: 1. In Proceedings of the 2007 ACM SIGPLAN/SIGBED conference

on Languages, compilers, and tools for embedded systems, LCTES ’07, pages

10–, New York, NY, USA, 2007. ACM.

[55] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,

MA, USA, 2002.

[56] John H. Reppy. Higher-order Concurrency. PhD thesis, Cornell University,

1992. Available as Computer Science Technical Report 92-1285.

[57] Radu Rugina and Martin Rinard. Pointer analysis for multithreaded programs.

In Proceedings of the ACM SIGPLAN 1999 conference on Programming lan-

guage design and implementation, PLDI ’99, pages 77–90, New York, NY, USA,

1999. ACM.

[58] Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel

programs. ACM Trans. Program. Lang. Syst., 25:70–116, January 2003.

[59] Radu Rugina and Martin C. Rinard. Symbolic bounds analysis of pointers,

array indices, and accessed memory regions. ACM Trans. Program. Lang. Syst.,

27:185–235, March 2005.

[60] Ando Saabas and Tarmo Uustalu. Program and proof optimizations with type

systems. Journal of Logic and Algebraic Programming, 77(1-2):131 – 154, 2008.

The 16th Nordic Workshop on the Prgramming Theory (NWPT 2006).

BIBLIOGRAPHY 69

[61] Ando Saabas and Tarmo Uustalu. Proof optimization for partial redundancy

elimination. Journal of Logic and Algebraic Programming, 78(7):619 – 642,

2009. The 19th Nordic Workshop on Programming Theory (NWPT 2007).

[62] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for mul-

tithreaded programs. In Proceedings of the eighth ACM SIGPLAN symposium

on Principles and practices of parallel programming, PPoPP ’01, pages 12–23,

New York, NY, USA, 2001. ACM.

[63] Vivek Sarkar. Code optimization of parallel programs: evolutionary vs. revolu-

tionary approaches. In Proceedings of the 6th annual IEEE/ACM international

symposium on Code generation and optimization, CGO ’08, pages 1–1, New

York, NY, USA, 2008. ACM.

[64] Vivek Sarkar. Challenges in code optimization of parallel programs. In Pro-

ceedings of the 18th International Conference on Compiler Construction: Held

as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009, CC ’09, pages 1–1, Berlin, Heidelberg, 2009. Springer-Verlag.

[65] Vivek Sarkar and Barbara Simons. Parallel program graphs and their classi-

fication. In Proceedings of the 6th International Workshop on Languages and

Compilers for Parallel Computing, pages 633–655, London, UK, 1994. Springer-

Verlag.

[66] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. Eraser: a dynamic data race detector for multithreaded programs.

ACM Trans. Comput. Syst., 15:391–411, November 1997.

[67] David A. Schmidt. Denotational semantics: a methodology for language devel-

opment. William C. Brown Publishers, Dubuque, IA, USA, 1986.

BIBLIOGRAPHY 70

[68] Bernhard Scholz, Nigel Horspool, and Jens Knoop. Optimizing for space and

time usage with speculative partial redundancy elimination. In Proceedings of

the 2004 ACM SIGPLAN/SIGBED conference on Languages, compilers, and

tools for embedded systems, LCTES ’04, pages 221–230, New York, NY, USA,

2004. ACM.

[69] Je↵rey Sheldon, Walter Lee, Ben Greenwald, and Saman Amarasinghe.

Strength reduction of integer division and modulo operations. In Proceedings of

the 14th international conference on Languages and compilers for parallel com-

puting, LCPC’01, pages 254–273, Berlin, Heidelberg, 2003. Springer-Verlag.

[70] Nicholas Sterling. Warlock: A static data race analysis tool. In USENIX Winter

Technical Conference, pages 97–106, January 1993.

[71] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-

gramming Language Theory. MIT Press, Cambridge, MA, USA, 1977.

[72] Christoph von Praun and Thomas R. Gross. Object race detection. In Proceed-

ings of the 16th ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’01, pages 70–82, New York,

NY, USA, 2001. ACM.

[73] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race detection

on millions of lines of code. In Proceedings of the the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering, ESEC-FSE ’07, pages 205–214,

New York, NY, USA, 2007. ACM.

[74] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune, and Scott

Mahlke. Gadara: dynamic deadlock avoidance for multithreaded programs. In

BIBLIOGRAPHY 71

Proceedings of the 8th USENIX conference on Operating systems design and

implementation, OSDI’08, pages 281–294, Berkeley, CA, USA, 2008. USENIX

Association.

[75] Jingling Xue and Qiong Cai. A life time optimal algorithm for speculative pre.

ACM Trans. Archit. Code Optim., 3:115–155, June 2006.

[76] Jingling Xue and Jens Knoop. A fresh look at pre as a maximum flow problem.

In Alan Mycroft and Andreas Zeller, editors, Compiler Construction, volume

3923 of Lecture Notes in Computer Science, pages 139–154. Springer Berlin /

Heidelberg, 2006.

[77] Yuan Yu, Tom Rodehe↵er, and Wei Chen. Racetrack: e�cient detection of

data race conditions via adaptive tracking. In Proceedings of the twentieth

ACM symposium on Operating systems principles, SOSP ’05, pages 221–234,

New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 72

Appendix A. Source Code

#inc lude <iostream>

#inc lude <iomanip>
#inc lude <f stream>

#inc lude <c s t d l i b>
#inc lude <s t r i ng>
#inc lude <s t d i o . h>
us ing namespace std ;
const i n t max=100;
s t r i n g programLines [1 0 0] ;
i n t lengthOfProgram ;
i n t f o r kPo s i t i o n =0;
void removeWhite (s t r i n g s t r , s t r i n g &back){

f o r (i n t counter=0; counter<s t r . l ength () ; counter++){
i f ((s t r [counter] !=32)){

back+=s t r [counter] ;
} ;

} ;
} ;
c l a s s s e t {
pr i va t e :

char var [max] ;
i n t l ength ;

pub l i c :
s e t (){

l ength=0;
} ;
boo l e x i s t (char ch){

f o r (i n t i =0; i<l ength ; i++)
{

i f (ch==var [i])
r e turn t rue ;

}
r e turn f a l s e ;

} ;
void add (s e t s e t1){

f o r (i n t i =0; i<s e t 1 . l ength ; i++)
add (s e t1 . var [i]) ;

} ;
void add (char ch){

i f ((ch>’0’&&ch < ’ 9 ’) | | e x i s t (ch))
re turn ;

var [l ength]=ch ;

BIBLIOGRAPHY 73

l ength++;
} ;
void remove (char ch){

f o r (i n t j =0; j<l ength ; j++){
i f (var [j]==ch){

f o r (i n t k=j ; k<l ength ; k++)
var [k]=var [k+1] ;

} ;
} ;
l ength��;

} ;
void showSet (){

f o r (i n t i =0; i<l ength ; i++)
cout<<var [i]<<” ” ;

cout<<endl ;
} ;
boo l i n t e r s e c t (s e t s1){

f o r (i n t i =0; i<s1 . l ength ; i++)
{

i f (e x i s t (s1 . var [i]))
r e turn t rue ;

} ;
r e turn f a l s e ;

} ;
} ;
c l a s s statement{
pr i va t e :

s t r i n g s t ;
i n t type ;
s e t concurrentModi f i ed ;
statement⇤ next ;
statement⇤ s t ;
statement⇤ s f ;

pub l i c :
s e t read ;
s e t modi f i ed ;
statement (){

type=0;
next=NULL;

} ;
statement (s t r i n g s t r){

s t=s t r ;
next=NULL;
s t=NULL;

BIBLIOGRAPHY 74

s f=NULL;
} ;
void wr i t e (){

cout<<s t ;
ca l cMod i f i ed () ;
modi f i ed . showSet () ;
read . showSet () ;

} ;
void ca l cMod i f i ed (){

i f (s t [0]== ’w’&&st [1]== ’h’&&st [2]== ’ i ’
&&s t [3]== ’ l ’&&s t [4]== ’ e ’)

{
i n t i =5;
do{

i++;
}whi l e (! (s t [i]==’d’&&s t [i +1]==’o ’)) ;
s t r i n g temp=””;
f o r (i n t j=i +2; j<s t . l ength () ; j++)

temp+=st [j] ;
s t= new statement (temp) ;
s t�>ca l cMod i f i ed () ;
modi f i ed=s t�>modi f i ed ;
read=s t�>read ;

}
e l s e i f (s t [0]== ’ i ’&&s t [1]== ’ f ’)
{

i n t i =2;
do{

i++;
}whi l e (! (s t [i]==’t ’&&s t [i +1]==’h ’

&&s t [i +2]==’e’&&s t [i +3]==’n ’)) ;
s t r i n g temp f , temp t=””;
f o r (i n t j=i +4 ; ! (s t [j]==’e’&&s t [j +1]==’ l ’

&&s t [j +2]==’s ’&&s t [j +3]==’e ’) ; j++)
temp t+=st [j] ;

s t= new statement (temp t) ;
s t�>ca l cMod i f i ed () ;
modi f i ed=s t�>modi f i ed ;
read=s t�>read ;
f o r (i n t p=j +4;p<s t . l ength () ; p++)

temp f+=st [p] ;
s f= new statement (temp f) ;
s f�>ca l cMod i f i ed () ;

BIBLIOGRAPHY 75

modi f i ed . add (s f�>modi f i ed) ;
read . add (s f�>read) ;

}
e l s e
{

f o r (i n t i =0; i<s t . l ength () ; i++){
i f (s t [i]==58&&st [i +1]==61){

modi f i ed . add (s t [i �1]) ;
read . add (s t [i +2]) ;
read . add (s t [i +4]) ;

} ;
} ;

} ;
} ;

} ;
c l a s s f o rk {
pr i va t e :

statement stms [max] ;
s e t concurrent [max] ;
i n t l ength ;

pub l i c :
f o rk (){

l ength=0;
} ;
void addStm(statement s t){

stms [l ength]= s t ;
stms [l ength] . ca l cMod i f i ed () ;
l ength++;

} ;
void computeConcurrent (){

f o r (i n t i =0; i<l ength ; i++)
f o r (i n t j =0; j<l ength ; j++){

i f (i != j)
concurrent [i] . add (stms [j] . modi f i ed) ;

} ;
} ;
boo l s a f e (){

computeConcurrent () ;
f o r (i n t i =0; i<l ength ; i++)
{

i f (concurrent [i] . i n t e r s e c t (stms [i] . read))
re turn f a l s e ;

} ;
r e turn t rue ;

BIBLIOGRAPHY 76

} ;
void show (){

f o r (i n t i =0; i<l ength ; i++)
stms [i] . wr i t e () ;

} ;
} ;
void readProgram (char⇤ l o c a t i o n){

char l i n e [max] ;
i f s t r e am i nF i l e ;
i nF i l e . open (l o c a t i o n) ;
i f (! i nF i l e) {

cout << ”Unable to open f i l e . Check f i l e name or l o c a t i o n .\n ” ;
e x i t (1) ; // terminate with e r r o r

}
i n t i =0;
i f s t r e am i n f i l e 1 (l o c a t i o n) ;
whi l e (! i n f i l e 1 . e o f ())
{

i n f i l e 1 . g e t l i n e (l i n e ,max , ’\n ’) ;
removeWhite (l i n e , programLines [i]) ;
i++;

} ;
lengthOfProgram=i ;
i n f i l e 1 . c l o s e () ;

f o r (i n t count=0; count<lengthOfProgram ; count++){
i f (programLines [count]==” fo rk ”){

f o r kPo s i t i o n=count ;
break ;

} ;
} ;

} ;
i n t nextPos i t i on (i n t p){

f o r (i n t count=p ; count<lengthOfProgram ; count++){
i f (programLines [count]==” fo rk ”){

r e turn count ;
} ;

} ;
r e turn �5;

} ;

#inc lude ”header1 . h”
i n t main ()
{

BIBLIOGRAPHY 77

statement temp ;
readProgram (” sampleProgram2 . txt ”) ;
i n t po s i t i on , kk=0;
p o s i t i o n=nextPos i t i on (kk) ;
whi l e (po s i t i on >0){

f o rk de f au l t 1 ;
f o r (kk=po s i t i o n +1; programLines [kk] !=” endfork ” ; kk++)

{
statement temp(programLines [kk]) ;

d e f au l t 1 . addStm(temp) ;
} ;
p o s i t i o n=nextPos i t i on (kk) ;
i f (d e f au l t 1 . s a f e ())

cont inue ;
e l s e
{

cout<<”The program i s not s a f e .”<<endl<<endl ;
e x i t (1) ;

} ;
} ;
cout<<”The program i s s a f e .”<<endl<<endl ;
r e turn 0 ;

}

